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Abstract 20 

The complex connectivity of nervous systems is thought to have been shaped by competitive 21 

selection pressures to minimize wiring costs and support adaptive function. Accordingly, recent 22 

modeling work indicates that stochastic processes, shaped by putative trade-offs between the cost 23 

and value of each connection, can successfully reproduce many topological properties of 24 

macroscale human connectomes measured with diffusion magnetic resonance imaging. Here, we 25 

derive a new formalism with the aim to more accurately capture the competing pressures of 26 

wiring cost minimization and topological complexity. We further show that model performance 27 

can be improved by accounting for developmental changes in brain geometry and associated 28 

wiring costs, and by using inter-regional transcriptional or microstructural similarity rather than 29 

topological wiring-rules. However, all models struggled to capture topologies spatial embedding. 30 

Our findings highlight an important role for genetics in shaping macroscale brain connectivity and 31 

indicate that stochastic models offer an incomplete account of connectome organization. 32 
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1 Introduction 44 

The human brain is a topologically complex network, showing properties that are neither 45 

completely random nor completely regular (1). These properties are commonly studied through the 46 

lens of graph theory (1, 2), in which the brain is represented as a collection of nodes, depicting 47 

putative processing units, such as individual neurons, neuronal populations, or brain regions, linked 48 

by edges, that capture some aspect of structural or functional connectivity between nodes. The 49 

application of graph-theoretic tools has identified key topological properties of brain networks, such 50 

as the existence of highly connected network hubs, a rich-club of strong inter-connectivity between 51 

hubs, and an economical, small-world, hierarchically modular organization (1–4). These 52 

topological properties also a have a characteristic topography, meaning that they are spatially 53 

embedded in consistent locations; for instance, network hubs tend to be located in transmodal 54 

association cortices (4, 5). Understanding the causes and consequences of this complex arrangement 55 

of connections is a central objective of connectomics (6).  56 

Over a century ago, Santiago Ramón y Cajal proposed some general principles for brain 57 

organization, arguing that nervous systems are configured according to three simple laws related to 58 

the conservation of space, material, and time (7). The conservation of space and material refers to 59 

a pressure to minimize the physical, metabolic, and cellular resources required to sustain neural 60 

function. This cost-minimization principle is ubiquitous in biological systems and minimizes 61 

unnecessary energy expenditure, which is essential for metabolically expensive organs such as the 62 

brain (8). Conservation of time refers to a requirement for rapid and efficient communication 63 

between system elements, which is essential for adaptive function and organism survival. 64 

Several studies have suggested that cost-minimization is an important principle of neural 65 

organization, showing that properties as diverse as the spatial arrangement of neurons and cortical 66 

areas (9–11), the branching patterns of neuronal arbors (12), and the fraction of cortical grey matter 67 

occupied by axons and dendrites (13), can be explained by a pressure to minimize the overall 68 

volume of axonal wiring, which is often used to represent the wiring cost of a nervous system. 69 

However, a network configured solely to minimize wiring costs resembles a lattice, in which each 70 

element only connects to its nearest spatial neighbors. Abundant evidence indicates that 71 

connectomes have more long-range projections than expected under a pure cost-minimization 72 

model (14–16). These long-range projections are thought to act as topological shortcuts, improving 73 

the speed, efficiency, robustness, and complexity of communication across the network (14, 16, 74 

17). In the language of Cajal, they can be said to conserve time. However, the long distances 75 

spanned by these connections (5, 18) connections incurs a wiring cost, leading to a trade-off 76 
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between Cajal’s conservations laws; more specifically, between the conservation of space and 77 

material (wiring cost) on the one hand and the conservation of time or, more generally, the 78 

promotion of complex, adaptive  processes (functional value), on the other (16).  79 

Insight into the possible role of cost-value trade-offs in sculpting connectome topology has 80 

come from generative network models, which specify wiring rules for growing brain-like networks 81 

in silico. Empirical evidence has indicated that the probability that two neural elements (such as 82 

individual neurons or brain regions) are connected decays roughly exponentially as a function of 83 

the distance between them, termed ‘the exponential distance rule’ (EDR) (19, 20). Modeling studies 84 

indicate that it is possible to grow synthetic networks that capture many key topological properties 85 

of empirical connectomes according to this rule, when it is implemented as a stochastic process in 86 

which the probability of forming a connection between any two network nodes declines 87 

exponentially as a function of their anatomical distance (19–23). Under this purely spatial model, 88 

long-range connections are more costly than short-range connections, but wiring costs are not 89 

absolutely minimized and are subject to stochastic fluctuations around a characteristic connection 90 

length scale. The networks that result from this model show many complex topological properties 91 

identified in empirical connectome data, including modularity, a fat-tailed degree distribution, 92 

brain-like motif spectra and distributions of connection distances, and the presence of a densely-93 

connected core (19, 20, 24–26). This exponential distance rule has thus been invoked as a 94 

fundamental principle of neuronal connectivity (Ercsey-Ravasz et al., 2013; Horvát et al., 2016; 95 

Wang & Kennedy, 2016). 96 

Recent modeling of human connectome data suggests that the EDR offers an incomplete 97 

account of connectome architecture. Specifically, this work indicates that EDR-based models are 98 

less accurate in reproducing several topological features of empirical connectomes when compared 99 

to models that combine a distance penalty with a preference to form topologically favorable 100 

connections, thus more closely capturing the cost-value trade-off implicit in Cajal’s laws (5, 28–101 

32). In particular, these studies suggest that models combining a distance penalty with a homophilic 102 

attachment rule, in which connections are more likely to form between nodes that connect to other 103 

similar nodes (28–30, 33), offer better accounts of the empirical data. However, three key 104 

considerations, detailed in the following, should be addressed before the homophilic attachment 105 

model can be accepted as a parsimonious account of macroscale human connectome topology.  106 

A first consideration is that the models considered to date have quantified wiring costs at a 107 

single, post-natal timepoint, which does not account for the dramatic changes in brain size and 108 

geometry that occur during early development, when connections are being formed (34, 35). 109 

Between 18 weeks gestational age and birth, the brain undergoes an approximately 20-fold 110 
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expansion in volume (35), which is coupled with substantial increases in the complexity of cortical 111 

folding (34). Such geometric changes influence distances between regions and may change inter-112 

regional wiring costs when compared to the adult brain (36, 37), and modeling work has found that 113 

capturing the physical growth of biological neural networks is important to predicting their 114 

subsequent topology (38, 39). The effect of these changes in brain size and shape on model 115 

performance has not been considered; indeed, it is possible that even a simple EDR may provide a 116 

sufficient model if long-range connections are established early when distances are smaller and 117 

wiring costs are lower. 118 

A second consideration is that current cost-topology models rely on abstract topological 119 

rules for influencing connection probabilities, which can sometimes have an ambiguous 120 

physiological interpretation. For instance, homophilic attachment based on similarity in 121 

connectivity neighborhoods implies that two nodes have knowledge of each other’s neighbors when 122 

forming a connection. It is unclear how such a mechanism would be instantiated in brain 123 

development. Alternative, physiologically-grounded homophilic processes may offer a more 124 

interpretable model. For instance, the architectonic type principle, formulated following extensive 125 

observations of mammalian tract-tracing data, proposes that regions with similar cytoarchitecture 126 

and laminar organization are more likely to be connected to each other (40, 41). Similarly, there is 127 

growing evidence that similarity in regional transcriptional profiles may also be linked to inter-128 

regional connectivity (5, 23). Whether such physiologically-grounded homophilic attachment rules 129 

offer a better account of empirical data than topological homophily has not been evaluated. 130 

A final consideration is that the performance of existing models is commonly evaluated with 131 

respect to topological properties of the network, while ignoring spatial topography. This is an 132 

important oversight, as the same topological distribution can be spatially embedded in different 133 

ways, and these topographical variations can have functional consequences (42, 43). An adequate 134 

model should ideally capture both topological and topographical properties of the empirical data. 135 

Recent evidence indicates that existing-cost-topology models cannot capture the topography of 136 

certain properties, such as the network degree sequence and, by extension, location of connectome 137 

hubs, even when model parameters are optimized for this objective (5, 31, 32) (although see also 138 

(30)). 139 

Informed by these considerations, we use generative network models to investigate spatial, 140 

developmental, physiological, and topological constraints on the human connectome. First, we 141 

develop a framework to account for developmental changes in brain size and shape when estimating 142 

model-based wiring costs, thus yielding a new class of developmentally-informed models that offer 143 

a more realistic appraisal of how wiring costs shape connectome topology. Second, after 144 
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introducing a new formulation of the cost-value model that more accurately captures trade-off 145 

mechanisms and which yields more interpretable parameter estimates, we compare the performance 146 

of spatial and trade-off models to models that rely on either topological or physiologically 147 

constrained wiring rules. Finally, we evaluate model performance with respect to both topological 148 

and topographical properties of the human connectome, yielding a comprehensive characterization 149 

of model performance. 150 

2 Results 151 

We used diffusion imaging data from 100 unrelated participants in the Human Connectome 152 

Project (44) to construct structural brain networks with which to assess the performance of different 153 

generative network models (see Methods). A schematic overview of our model fitting and 154 

evaluation procedure is presented in Fig. 1. As wiring costs are a fundamental element of the models 155 

that we evaluate, our first aim was to incorporate into the generative models the pronounced 156 

changes in cortical shape and size that occur during the second half of gestation, when most 157 

connections are being formed. To this end, we used cortical surface reconstructions of fetal 158 

structural MRI templates. These templates were obtained from a public database, where 81 scans 159 

of fetuses acquired between 19-39 weeks gestational age (GA) were used to construct templates 160 

spanning 21-38 gestational weeks (Fig. 1A) (45, 46). We registered each surface to an adult 161 

template surface using the Multimodal Surface Matching (MSM) algorithm (Fig. 1B) (47, 48), 162 

allowing us to map nodes to consistent spatial locations across all time points and to measure how 163 

distances between nodes, as a proxy for putative wiring costs, change through development. We 164 

refer to these developmentally informed models as ‘growth’ models and the traditional models that 165 

only estimate wiring cost in the adult brain as ‘static’ models (Fig. 1C). 166 
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 167 
Fig. 1. Schematic of our approach to fitting and evaluating generative connectome models. (A) Fetal surfaces 168 
from 21-38 weeks gestational age (GA), showing sulcal depth. (B) To estimate how network wiring costs change 169 
through development, we parcellate the adult surface and use spherical Multimodal Surface Matching (MSM) based 170 
on sulcal depth to map the parcellation to each of the fetal (target) surfaces. This procedure allows us to track the 171 
location of each parcellated region and estimate how wiring costs change through development. (C) Generative 172 
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models were run using estimates of wiring cost based on adult distances (static models) or distances that change over 173 
time (growth models). (D) Benchmark topological properties were measured for each synthetic network and 174 
compared to the distributions of the empirical network using the �� statistic to quantify model fit (similar 175 
distributions indicate a better fit; thick lines represent empirical data and lighter lines correspond to different 176 
realizations of a model). (E) Steps C-D were repeated for different parameter values in each model using an 177 
optimization scheme that searches the parameter landscape to find the parameter combination that yields the best fit 178 
to the data. Starting with an initial random sample, the algorithm narrows in on areas of the landscape associated with 179 
better fits and samples those regions more often (see Methods). (F) Leave-one-out cross-validation is used to avoid 180 
over-fitting. For a given participants network, the best-fitting parameters for the 99 other participants are used to 181 
generate model networks. These models are iterated 20 times to account for the inherent stochasticity of the models 182 
(a) and the average across these 20 iterations is then taken to yield 99 fit values (b). These 99 fit values are the 183 
averaged (c), resulting in a single, cross-validated fit statistic, ��� for each person. 184 

 185 

We assessed model fits to the data as per previous work (29), using the Kolmogorov-186 

Smirnov (KS) statistic to quantify the distance between model and empirical network distributions 187 

of node degree, node clustering, node betweenness, and edge length distributions, with the largest 188 

such distance being taken as the final index of model fit (max(��) i.e., the performance of a given 189 

model was assessed according to the property that it captured least accurately; Fig. 1D). To identify 190 

the best-fitting parameters for each model, we employed an optimization procedure that sampled 191 

10,000 different parameter combinations, preferentially sampling from areas in the parameter 192 

landscape that produced the best fits (Fig. 1E; see Methods). Past models have evaluated model 193 

fitness based on within-sample performance, making it difficult to compare models with different 194 

complexity. Thus, to ensure that our results were not driven by overfitting, and that models with 195 

different numbers of free parameters could be compared fairly, we used a leave-one-out cross-196 

validation procedure (note many different cross-validation schemes could be used, but we used 197 

leave-one-out as to limit computational burden associated with exhaustive parameter sweeps and 198 

model fitting). As depicted in Fig. 1F, this procedure comprised three steps: (1) for each 199 

individual’s data, we fitted models using the optimum parameter values obtained for the other 99 200 

individuals from the initial sweep of 10,000 parameter combinations (with optimal parameters 201 

defined using max(��)), and repeated this process 20 times to account for stochastic fluctuations 202 

in the models, yielding 99 × 20 model networks for each person; (2) we then took the average 203 

across the 20 runs, resulting in 99 mean fit estimates; (3) the average fit over these 99 models in 204 

the held-out individual was recorded; (4) Steps 1–3 were repeated so that each individual in the 205 

sample was held out once, resulting in a cross-validated fit-statistic, ���, for each participant, with 206 

smaller values indicating a better fit.  207 

The generative model forms connections probabilistically and one at a time according to a 208 

specific set of wiring rules. Under the traditional formulation of the cost-topology model 209 

proposed by previous studies (28, 29), the wiring rule can be written as 210 
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��� = exp�−����� × ����, (1) 211 

where ��� is connectivity score  that is used to subsequently derive a probability of a connection 212 

forming between nodes � and � at a given time step (see Methods), ��� is the distance between those 213 

nodes, � is a parameter controlling the scale of the distance decay, ��� is some topological 214 

relationship between nodes between nodes � and �, and   is a parameter controlling the scaling of 215 

the topological term. We note that prior work has often formulated the wiring cost term using a 216 

power-law, rather than exponential, distance-dependence but we use the exponential form here due 217 

to the abundant empirical evidence for such a dependence (19, 20), to allow a direct comparison to 218 

the widely studied EDR (19, 20), and because the scale-invariance of the power-law function means 219 

that any such models will preserve relative wiring costs under global changes in brain size, and will 220 

therefore be insensitive to the developmental changes in brain geometry introduced in our growth 221 

class of models. We followed the approach of Betzel and colleagues (29) and considered 12 222 

different topological terms for ��� that capture various aspects of degree, clustering, and connection 223 

homophily, the formal definitions of which are provided in Table 1.  224 

In the Methods and Supplementary Results, we show that the model formulation 225 

expressed in Eq. 1 can disproportionately penalize long-range connections and lead to ambiguous 226 

interpretation of parameter estimates due to a lack of independence between model parameters. 227 

We therefore derived a new formulation, given by 228 

��� = exp�−�����
max�exp(−��)� + " # ����

max(��)$ , (2) 229 

where " controls the contribution of the topological term and each term is normalized by its 230 

maximum value to ensure appropriate scaling of the distance and topological quantities.  231 

Practically, when estimating ���, high values of " assign more weight to the topological term; 232 

high values of � indicate a stronger distance penalty (i.e., shorter length scale of connectivity); 233 

and high values of   control the non-linear scaling of the topological term, such that large values 234 

of ��� exert a proportionally greater influence than smaller values. Models including the non-235 

linear scaling of topology provided by   fitted the data better than models that excluded   (fig. 236 

S1, see supplementary text). Moreover, fig. S1C shows that the additive formulation of Eq. 2 237 

more accurately captures putative trade-offs between cost and topology in connectome wiring, 238 

leads to more interpretable parameters estimates, and can fit our data better than the multiplicative 239 

formulation in Eq. 1, particularly with regard to capturing the empirical edge length distribution 240 
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(fig. S2). Therefore, all results presented in the following sections use the basic formulation given 241 

in Eq. 2. 242 

 243 

Table 1. Definitions of topological terms used in the cost-topology generative models 

Name ���   Topology/Physiological 
class 

Description 

clu-avg %&'
( + &)

( *  Topology: Clustering 
Mean clustering coefficient of nodes � 
and � 

clu-diff +,� − ,�+  Topology: Clustering 
Absolute difference between the 
clustering coefficients of nodes � and � 

clu-max max-,� , ,�.  Topology: Clustering 
Maximum clustering coefficient of 
nodes � and � 

clu-min min-,� , ,�.  Topology: Clustering 
Minimum clustering coefficient of 
nodes � and � 

clu-prod ,�,�  Topology: Clustering 
Product of the clustering coefficients of 
nodes � and � 

deg-avg %1'
( + 1)

( *  Topology: Degree Mean degree of nodes � and � 

deg-diff +2� − 2�+  Topology: Degree 
Absolute difference between the degree 
of nodes � and � 

deg-max max-2� , 2�.  Topology: Degree Maximum degree of nodes � and � 

deg-min min-2� , 2�.  Topology: Degree Minimum degree of nodes � and � 

deg-prod 2�2�  Topology: Degree Product of the degrees of nodes � and � 

matching 
+3'\5∩3)\7+
+3'\5∪3)\7+  Topology: Homophily 

The proportion of neighbors shared by 
nodes � and �  

neighbors ∑ :�;:�;;   Topology: Homophily 
The number of nodes neighboring both � and � 

cCGE <=>�� − ?����� + 1 
Physiological: Corrected 
CGE 

The CGE of nodes � and � corrected for 
the spatial autocorrelation 

uCGE <=>�� + 1  
Physiological: 
Uncorrected CGE 

The CGE of nodes � and � uncorrected 
for the spatial autocorrelation 

MPCHIST @A<(HIST)�� + 1 Physiological: 
Histological 

The partial correlation of histological 
intensity profiles of nodes � and � 

MPCT1/T2 @A<(T1/T2)�� + 1 
Physiological: T1/T1 
weighted ratio 

The partial correlation of T1/T2 ratio 
intensity profiles of nodes � and � 

2� = degree of node �, ,� = clustering coefficient of node �, 3�\G = neighbours of node � but excluding node 

�, : = adjacency matrix, HI = matrix exponential of A. ?����� = the exponential fit between distance and 
CGE. For the cCGE, uCGE, MPCHIST, and MPCT1/T2 models we add a value of 1 as to avoid any negative 
values, as such values cannot be used to appropriate define a probability. 

 244 

2.2 Accounting for developmental changes in cortical geometry 245 

We first set out to determine whether incorporating developmental constraints into the 246 

generative models, by accounting for fetal changes in brain size and shape when estimating 247 

wiring costs, influences model performance. Fig. 2 shows how cortical geometry varies through 248 

time (Fig. 2A), along with variations in total surface area (Fig. 2B) and inter-regional distances 249 
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(Fig. 2C). From 21 GA to 38 weeks GA, there is a 378% increase in total cortical surface area 250 

(Fig. 2B) and the distribution of inter-regional distances gradually becomes more skewed, such 251 

that an increasing number of regional pairs separated by longer anatomical distances emerges 252 

(Fig. 2C) and the maximum possible distance increases by 74%. In comparison to the adult brain, 253 

total cortical surface area observed at 38 weeks GA is 67% smaller and the maximum inter-254 

regional distance is 41% shorter. Such large differences indicate that wiring costs estimates using 255 

adult brain geometry vary greatly from those that are likely to operate when inter-regional 256 

connections are being established. 257 

 258 
Fig. 2. Surface area and fiber-distance distributions for the fetal surfaces. (A) The adult brain is warped 259 

into the shape of the fetal brain at each gestational age (GA) timepoint (see Fig. 1B) and allowing our node 260 

parcellation to be projected through developmental time. (B) Surface area estimated using the inner white/grey 261 

boundary of the left hemisphere of each fetal brain, with the adult included for comparison. (C) Kernel density plots 262 

of inter-nodal fiber distances between all nodes at each developmental time point. 263 

 264 

To incorporate such developmental changes in brain size and shape into out models, we 265 

introduced a time-varying wiring cost to the basic formulation given by Eq. 2, yielding 266 
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��� = exp�−����(K)�
max�exp(−��(K))� + " # ����

max(��)$ , (3) 267 

where ���(K), which is the distance between nodes � and � at timepoint K (where K = 1 is 21 weeks 268 

GA, K = 2 is 22 weeks GA, and so on).  For simplicity, we add connections at a uniform rate at 269 

each developmental time point, resulting in >/19 connections being added iteratively (i.e., one by 270 

one) according to the wiring costs given by any individual time point, with > corresponding to the 271 

number of edges in the empirical network, and 19 representing the number of developmental 272 

timepoints considered (18 fetal and one adult). Once the set number of edges is added at a given 273 

timepoint, the distances are updated to the next timepoint and the procedure repeats until > edges 274 

have been added (note that in the static model, all edges are added according to the same 275 

geometry). 276 

For the static and growth trade-off models, we compared 12 different topological terms for 277 

���, as done previously (Betzel et al., 2016, see Table 1 for definitions) along with a purely spatial 278 

model based solely on the EDR. The cross-validated fit statistics for these models are shown in Fig. 279 

3. We replicate prior work (28, 29) in showing that trade-off models generally out-perform the 280 

purely spatial EDR-based model, even when considering out-of-sample performance. While the 281 

spatial growth model yielded a small yet statistically significant improvement in mean ��� relative 282 

to its static counterpart (growth 0.34 ± 0.03, static 0.35 ± 0.02, QRSTU < 0.001), this 283 

improvement was not sufficient to surpass the performance of the best-fitting trade-off models. 284 

Thus, even when developmental changes in brain geometry are considered, purely spatial models 285 

offer an incomplete account of the data. This result offers important confirmation of the hypothesis 286 

that, compared to a simple EDR process, the trade-off models more accurately capture the four key 287 

statistics of human connectome topology considered here. 288 

 289 

Fig. 3. Model performance for static and growth variants of spatial and cost-topology trade-off models. Each 290 
violin plot shows the distribution of cross-validated ��� values for static and growth additive models across subjects. 291 
The color of each violin plot indicates the topology metric used in the model: homophily is shown in blue, clustering 292 
(clu) in red, degree (deg) in green, and spatial in purple. The white circle indicates the median of each distribution, 293 
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while the horizontal black line indicates the mean. The matching growth model achieved the best performance. * Q <294 0.05 Bonferroni corrected (325 tests between all 26 models), Wilcoxon signed-rank test.  295 
 296 

As per past work (29), we found that the best-fitting model combines a distance penalty 297 

with a homophilic attachment rule based on the matching index (see Table 1). We also observed a 298 

significant (QRSTU < 0.001) performance advantage for the growth variant of this model over the 299 

static case, indicating that incorporating developmental constraints enhance the accuracy of this 300 

model, with an average improvement of ~10% (i.e., the mean ��� values for the best-fitting static 301 

and growth matching index models were 0.22 ± 0.01 and 0.20 ± 0.01, respectively). Performance 302 

differences between growth and static variants of the other cost-topology models were smaller.  303 

As ��� is derived from the worst KS statistic across four topological measures (node degree, 304 

node clustering, node betweenness, and edge length), we examined the extent to which the 305 

performance of each of these measures shaped the resulting ��� value. For most models, the nodal 306 

clustering, nodal betweenness, and edge length distributions were the final determinant of the final 307 

��� value, indicating that these properties were the most difficult to capture (fig. S3). By 308 

comparison, the degree distribution was better captured (as indicated by only a small proportion of 309 

max(��) values being determined by the KS statistic for degree). ��� for the best-fitting matching 310 

model, in both static and growth cases, was more evenly shaped by the different topological 311 

properties. Notably, the growth matching model more accurately capture the empirical edge length 312 

distribution than its static counterpart, suggesting that improved performance of the growth model 313 

arose from a more accurate estimate of network wiring costs, as expected. 314 

Comparison of model parameter estimates offers further insights into the relative behavior 315 

of the growth and static models. The optimal parameters for the two classes of models showed 316 

substantial differences; for instance, the growth matching model had best-fitting parameters of 317 

� = 0.35 ± 0.17,  = 1.76 ± 0.44, and " = 2.05 ± 1.29, while the static model had � = 0.20 ±318 

0.15,  = 1.30 ± 0.36, and " = 3.93 ± 2.15 (fig. S4). The higher � observed under the growth 319 

formulation suggests that an increased distance penalty is required for an optimum model fit 320 

compared to the static form. This effect likely arises because the length scales in the growth 321 

model are shorter than in the static variant, so the growth model requires a stronger distance 322 

penalty to match the adult edge-length distribution. Relative to the static variant, the growth 323 

matching model also required a weaker weighting and stronger non-linear scaling of the topology 324 

term, as indicated by the magnitudes of the " and   parameters, respectively (fig. S4). This result 325 

suggests that connection probabilities were more heavily skewed towards node pairs with high 326 

matching index values in the growth variant. Given that the growth variant was also associated 327 

with a stronger distance penalty (higher �), the higher value of   implies that topologically 328 
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valuable connections are more likely to form during early stages of the growth model, when the 329 

distance penalty is weaker. Notably, for cost-topology models showing similar performance to the 330 

purely spatial model, " was approximately 0, consistent with the observation that topological 331 

rules did not improve model accuracy in these cases. These mechanistic interpretations of model 332 

parameters are only possible under our new model formulation (i.e., Eq. 2 and Eq. 3), as the 333 

classical formulation of Eq. 1 does not sufficiently separate the contributions of cost and topology 334 

(see Methods). 335 

2.3 Physiologically-informed attachment rules 336 

Our results indicate that cost–topology trade-off models offer a more accurate account of 337 

empirical human connectome topology than purely spatial, EDR-based models, and that homophilic 338 

attachment mechanisms informed by the matching index show the strongest performance. Our 339 

findings also indicate that incorporating developmental constraints into the matching model 340 

improves its accuracy. However, the topological homophily rule is an abstraction with no clear 341 

physiological mechanism. We next asked how the performance of this rule compares to models that 342 

incorporate alternative, physiologically grounded homophilic attachment mechanisms, such as 343 

those related to the architectonic type principle (38, 41, 49, 50). First, we estimated the 344 

microstructural profile covariance between pairs of regions using the Big Brain atlas, which is a 345 

Merker-stained 3D histological reconstruction of a post mortem adult human brain (51). This 346 

measure, which we term MPCHIST, quantifies inter-regional similarity in estimates of cell size and 347 

density through the cortical depth (52). Second, we estimated microstructural profile covariance 348 

derived from the ratio of T1-weighted to T2-weighted signal estimated from in vivo MRI 349 

(MPCT1/T2), which is often used as a proxy for intracortical myeloarchitecture (53). Finally, given 350 

the reported link between coupled gene expression and neuronal connectivity (5, 23), we also 351 

evaluated measures inter-regional transcriptional coupling, quantified as correlated patterns of 352 

expression measured across 1634 brain-expressed genes (54) using data from the Allen Human 353 

Brain Atlas (AHBA; (55, 56)). We term this measure correlated gene expression (CGE) (5, 23). 354 

Further details are provided in the Methods. 355 

For each of these three physiologically-informed models, we evaluated model performance 356 

with or without a wiring-cost term in the model. Models without the wiring cost take the form ��� =357 

���� , where ��� is either MPCHIST, MPCT1/T2, or CGE. Models with wiring cost include ���, as per 358 

in Eq. 2 or use ���(K) as in Eq. 3 when considering growth variants. Note that growth variants can 359 

only be estimated for models that include wiring costs. For CGE-constrained models, we examined 360 
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variants that used either raw CGE values (uCGE) or values corrected for the well-known distance-361 

dependence of the coupling estimates (cCGE) (23, 56). The relationship between MPC and distance 362 

is more regionally variable and a bulk distance correction unevenly impacts certain areas (57) and 363 

so we only consider raw estimates of these quantities (see Methods).  364 

First, we examined whether any of the single-parameter physiological models (MPCHIST, 365 

MPCT1/T2, cCGE, or uCGE) could outperform the classical spatial and/or cost-topology models. As 366 

shown in Fig. 4, all but the cCGE outperformed the spatial model (QRSTU <  0.001), but only the 367 

uCGE model (��� = 0.18 ± 0.02) outperformed the matching index model (static: ��� = 0.21 ±368 

0.01; growth: ��� = 0.20 ± 0.01). Adding a distance to term to the physiological models improved 369 

the performance of the MPCHIST and MPCT1/T2 models, and growth variants were associated with 370 

slight performance advantages for all but the spatial+ MPCT1/T2 model. Critically however, none of 371 

these models surpassed the accuracy of the uCGE model. Moreover, combining uCGE with a wiring 372 

cost term offer only a minor 3% performance gain (growth spatial+uCGE: ��� = 0.182 ± 0.019; 373 

uCGE: ��� = 0.188 ± 0.017), suggesting that the single-parameter uCGE model offers a 374 

parsimonious account of the data.  375 

 376 

Fig. 4. Model performance of physiologically-informed models. Each violin plots shows the ��� values different 377 
models. The color of each violin plot indicates the type of model: matching is shown in blue, cCGE in red, uCGE in 378 
green, MPCHIST in orange, MPCT1/T2 in cyan, and spatial in purple. The white circle indicates the median of each 379 
distribution, and the horizontal black line indicates the mean. uCGE models achieved the best fit. Note that uCGE, 380 
cCGE, MPCHIST, MPCT1/T2 models do not have a growth variant as they do not have an independent distance term. * 381 Q < 0.05 Bonferroni corrected (120 tests between all 16 models), Wilcoxon signed-rank test. 382 

 383 

The lack of improvement observed with the addition of a distance penalty to the uCGE 384 

model is likely due to the approximately exponential distance-dependence that is already present in 385 

uCGE values (23, 56). Indeed, as noted above, the cCGE model, which explicitly removes the 386 

intrinsic spatial dependence of CGE, was the worst performing model. This result, together with 387 

the strong performance advantage of the uCGE model over the purely spatial model, indicates that 388 
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it is the specific spatial patterning of CGE, beyond a simple EDR-based distance dependence, that 389 

is particularly informative about connectome topology. The only other physiologically informed 390 

model to out-perform the matching index model was the static variant of the spatial+ MPCT1/T2 391 

(��� = 0.19 ± 0.025, QRSTU <  0.001). All other physiologically informed models showed either 392 

comparable or slightly worse performance than the matching-index model. 393 

Evaluation of model fits to the specific topological properties used in the fitting procedure 394 

indicated that the physiological models (excluding cCGE, spatial+cCGE, and MPCT1/T2) more 395 

accurately captured the edge length distribution than the topological models, for which edge lengths 396 

were fitted least accurately (fig. S5). For the physiological models, betweenness and clustering were 397 

the two properties that were least accurately reproduced.  398 

2.4 Modeling topographical properties of the human connectome 399 

 Our findings indicate that physiologically-informed homophilic attachment mechanisms, 400 

and particularly those constrained by inter-regional transcriptional coupling, can reproduce key 401 

topological properties of the human connectome better than wiring rules based on topological 402 

homophily. We next investigated whether these models can also reproduce the way in which these 403 

properties are spatially embedded; i.e., the topography of the connectome. To this end, we focused 404 

on the performance of the uCGE models, matching index, and spatial models in in reproducing the 405 

spatial topography of regional clustering, betweenness, degree, and mean connection distance; that 406 

is, the spatial characteristics of the four topological properties used to fit the models to the data. We 407 

quantified model performance in capturing topographical properties as the Spearman correlation 408 

between the best-fitting model and empirical node sequences for each of these properties. Note that 409 

only the topological (i.e., statistical distributions), and not topographical (i.e., node/edge 410 

sequences), properties were used to optimize model parameters.  411 

We found that while the uCGE and matching models closely capture the statistical 412 

distributions of topological features, all models generally show poor performance in capturing 413 

topographical properties, with the average correlation across subjects never exceeding 0.21 (Fig. 414 

5). Despite this generally modest performance, the uCGE and spatial+uCGE models showed better 415 

performance across nearly all topographical properties. 416 

The models considered in Fig. 5 were optimized to fit topological properties. To investigate 417 

in more detail whether the models can accurately reproduce topographical properties regardless of 418 

fits to topological distributions, we evaluated the maximum the Spearman correlation between 419 

empirical and model node degree obtained across all parameter combinations evaluated in our 420 

model fitting procedure. We found that no such correlations ever exceeded 0.49, with median 421 
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correlations across the models ranging between -0.17 and 0.13 (fig. S6), further suggesting that 422 

current generative models have a limited capacity for reproducing topographical properties of the 423 

human connectome. 424 

 425 
 426 
Fig. 5. Model performance in capturing connectome topography. For each of the network measures that were used 427 
to evaluate model performance, we show violin plots of the spearman correlation between the empirical and data for 428 
selected models for a given property of the model fit function. For the spatial+uCGE model, we additionally show, for 429 
each network measure, the average CDF of the model data (colored line) as compared to the empirical data (black line); 430 
a scatter plot of average nodal model values against average nodal empirical values; and a projection of these across-431 
subject average nodal measures onto the cortical surface. (A) Node degree spatial arrangement. (B) Node clustering 432 
spatial arrangement. (C) Node betweenness spatial arrangement. (D) Mean nodal distance spatial arrangement.  433 

 434 

 435 

 436 
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3 Discussion 437 

In this work, we introduce a new formalism for accurately capturing how cost-value trade-438 

offs might shape brain network wiring, and combine this new model with a framework for 439 

incorporating physiological constraints and developmental changes in brain size and shape. Using 440 

a cross-validated model evaluation procedure that accounts for variations in model complexity, we 441 

show that developmentally informed growth models fit the data better than models assuming fixed 442 

wiring costs through development. As per prior work (5, 28–32), we confirm that cost-topology 443 

trade-off models perform better than purely spatial models, but also show that physiologically-444 

constrained models, particularly those in which the probability of forming a connection between 445 

two regions is influenced by their level of transcriptional coupling, offer a more accurate and 446 

parsimonious account of connectome topology. While physiological models did show better 447 

reproduction of empirical topographical properties than cost-topology models, all models weakly 448 

captured the way in which the data are spatially embedded. Collectively, our findings suggest that 449 

a simple, single-parameter generative model with a homophilic attachment mechanism based on 450 

transcriptional coupling offers the most parsimonious account of connectome topology, and that 451 

additional constraints may be required to accurately model topographical properties of human brain 452 

networks.  453 

Parsing the effects of space, topology, and physiology on connectome wiring 454 

The EDR has been proposed as a fundamental constraint on neuronal connectivity, having 455 

been used to explain edge-length distributions and the presence of particular kinds of cliques and 456 

motifs in the connectomes of the mouse and macaque (19, 20). The rule implies that stochastic 457 

processes subject to a distance-dependence are sufficient to explain connectome topology. Past 458 

work directly comparing EDR-based models to cost-topology trade-off models has found that the 459 

latter class fit empirical macroscale human connectome data better (5, 28–30, 32), but these studies 460 

did not account for differences in model complexity (see Methods). Our cross-validated fitting 461 

procedure allowed fair model comparison and confirmed the superiority of the trade-off models. 462 

Moreover, we showed that incorporating developmental changes in brain geometry still resulted in 463 

superior performance for trade-off compared to spatial models, indicating that a past reliance on 464 

using adult estimates of wiring cost has not artificially limited the performance of models based 465 

solely on EDR-like processes. These findings are in line with Cajal’s (7) hypothesis that an interplay 466 

between wiring cost and functional value shapes brain network wiring.  467 

Of the trade-off models considered here, those relying on homophilic attachment guided by 468 

the matching index performed better than models based on properties of node clustering or degree, 469 
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consistent with prior work (28–30, 32). However, while this form of topological homophily may 470 

be plausibly linked to a Hebbian-like plasticity process (33), the precise mapping between 471 

topological terms such as the matching index and the physiological processes that sculpt neuronal 472 

connectivity remains unclear. We therefore investigated an alternative class of homophilic 473 

attachment models in which inter-regional homophily was informed by physiology rather than 474 

topology and showed that such models often perform better than the matching index model.  475 

In a general sense, all three physiologically-constrained models considered here––CGE, 476 

MPCHIST, and MPCT1/T2––offer different ways of testing the architectonic type principle, or 477 

structural model of neuronal connectivity, which states that regions with more similar 478 

cytoarchitecture and laminar organization and more likely be connected with each other (40, 41, 479 

49, 58). MPCHIST and MPCT1/T2 represent more direct measures of cytoarchitectonic similarity, 480 

quantifying cortical depth-dependent variations in cell size/density and myelin content, 481 

respectively. CGE offers an arguably less direct, although perhaps related measure of 482 

microstructural similarity. Gene-expression measures in the AHBA are obtained through bulk tissue 483 

microarray, and the resulting expression values will also be influenced by regional variations in 484 

cellular architecture, in addition to other factors influencing regional transcriptional activity, 485 

although the specific contributions to CGE made by cytoarchitectonic or other aspects of 486 

transcriptional similarity remain unclear.   487 

The superior performance of both CGE and MPCT1/T2 compared to MPCHIST models may 488 

indicate that inter-regional coupling of factors related to myeloarchitecture may be more closely 489 

linked to connectivity than similarity in neuronal organization, in light of evidence that the T1/T2 490 

ratio track intracortical myelin (53) and that oligodendrocyte-related genes contribute to variations 491 

in CGE that are linked to inter-regional connectivity (5) Notably, MPCT1/T2 has a lower resolution 492 

than MPCHIST, and is thus more sensitive to the skewness of the intensity profiles, which varies 493 

along a sensory-fugal axis (57). As such, MPCT1/T2  more closely corresponds to the hierarchical 494 

sensory-fugal axis, which is an established organizing principle of neuronal connectivity (59). 495 

Additionally, the BigBrain atlas from which MPCHIST estimates were derived was constructed using 496 

only a single brain and the challenges of data reconstruction and lack of averaging across 497 

individuals may result in somewhat noisier measures.  498 

The spatial+uCGE model showed the lowest average ���, closely followed by the single 499 

parameter uCGE model. The strong performance of the single-parameter uCGE model suggests 500 

that a non-linear (power-law) scaling of CGE values to favor connections between regions with 501 

positive CGE (see Methods) provides a parsimonious model of macroscale connectome topology, 502 

with little additional benefit from the inclusion of a term for connection wiring costs. Although the 503 
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uCGE values show a strong and approximately exponential distance-dependence (23, 56), this 504 

dependence alone cannot account for the strong performance of the uCGE model, given that the 505 

spatial model performed so poorly. Rather, it is the specific spatial patterning of CGE values that 506 

is likely to be important in shaping connectome topology. This conclusion is further supported by 507 

the poor performance of the spatial+cCGE model, which replaces the intrinsic distance-dependence 508 

of the CGE values with a fitted exponential wiring-cost penalty. Thus, while a bulk exponential 509 

trend can approximate the distance-dependence of CGE, fluctuations around this trend may pay a 510 

central role in shaping inter-regional connectivity. In this sense, both spatial and physiological 511 

constraints may be more relevant to understanding connectome wiring than abstract topological 512 

rules. 513 

Accounting for developmental changes in brain size and shape 514 

In general, growth-based model variants yielded small, yet significant, performance 515 

advantages over their static counterparts when considering the best-fitting models. This result 516 

suggests that developmental changes in cortical geometry may not play a substantial role in shaping 517 

connectome topology. Optimal values of �, which define the distance penalty imposed in the model, 518 

were larger in the growth models than the static model, indicating that an increased distance penalty 519 

was required for the growth models, on average. This increased penalty counteracts the potential 520 

benefit of shorter distances at earlier timepoints. Since the position of nodes, and thus the relative 521 

distances between them, did not change drastically from one timepoint to another (except for 522 

between the 38 gestational week and adult brain timepoints), it is likely that the models fitted the � 523 

parameter to the average distance across all these timepoints. Since the distances in the fetal brains 524 

largely represent scaled-down adult distances, this behavior will limit potential performance 525 

differences between growth and static model variants. One way around this limitation is to fit a 526 

distinct value of � at each timepoint. Future work could also look to vary the rate at which 527 

connections are added at different time points, however, these changes come at the cost of an 528 

explosion in model complexity. We opted for the simplest approach and fixed � across time, but 529 

our basic framework could be adapted to investigate these more nuanced influences in future work.  530 

Our growth models were implemented such that any node at any given time point could 531 

form a connection. This is known as tautochronous (or parallel) growth. Simulations have suggested 532 

that heterochronous (or serial) growth, in which there is a prescribed order to which nodes can form 533 

connections, may offer a more realistic model (37, 49, 60, 61). Heterochronous growth is thought 534 

to play an important role in shaping the relationship between cytoarchitectonic similarity and 535 

connectivity (58) and may facilitate the formation of long-range connections when combined with 536 

spatial changes in brain geometry. Our modeling framework can be extended to consider 537 
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heterochronous growth by adding connections at different rates or times for different brain regions. 538 

Developing principled ways of parametrizing such growth processes will be an important extension 539 

of the current work. 540 

Modeling topographical properties of the connectome 541 

Initial generative modeling studies only evaluated model performance with respect to a 542 

small set of hand-picked topological properties (28, 29), thought to be characteristic of the human 543 

connectome. Only recently have topographical properties been considered (5, 30–32). Recent 544 

studies have shown the importance of the spatial location of high-degree hub regions (42), and 545 

indicated that classical cost-topology trade-off models cannot accurately capture the spatial 546 

arrangement of nodal degree (31) (however see (30) as well as limitations below), while 547 

incorporating transcriptional information can improve accuracy (5). These findings motivated us to 548 

consider the extent to which our models could reproduce the topographical properties of degree, 549 

clustering, betweenness and mean connection distance. We replicated prior results indicating that 550 

physiologically constrained models, particularly those using CGE estimates, more accurately 551 

captured diverse aspects of network topography (5). However, even the best-fitting model achieved 552 

only moderate success, with the highest spatial correlation in the spatial+uCGE model (across all 553 

four properties) being [ =  0.19. It is thus possible that a combination of transcriptional constraints 554 

and heterochronous growth may be necessary to accurately capture both topological and 555 

topographical properties of the human connectome. This combination may result from 556 

developmental variations in transcriptional profiles guiding axons to their targets. The construction 557 

of anatomically comprehensive gene-expression atlases through different stages of prenatal 558 

development (62) would help to test this hypothesis. 559 

3.1 Limitations 560 

The reference cortical surfaces we used at each fetal timepoint were obtained from different 561 

fetuses and using differing numbers of scans, introducing variability in cortical shape and size 562 

between gestational time points (45, 46). This variability means that our surface model does not 563 

smoothly develop from one timepoint to another, as would be expected in an actual brain. 564 

Nonetheless, we expect that the fiber distances estimated using these geometries should not vary 565 

dramatically, and that for present purposes they represent a reasonable first approximation of 566 

developmental changes in geometry.  567 

 Our growth model added connections one at a time, but connections are likely to form 568 

contemporaneously in the developing brain. Connections are added sequentially in the model so 569 

that the topology of each edge can be recalculated at each iteration but future extensions may 570 
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consider sampling multiple edges at any given time. Moreover, we added an approximately equal 571 

number of connections at each developmental timepoint, but more complex temporally and 572 

spatially varying schemes for connection formation are possible. Future work could also consider 573 

modeling physical processes of connectivity in geometric space, like specific rules for axonal 574 

guidance or neurodevelopmental gradients, in order to provide a stronger mechanistic account for 575 

how connections form (e.g., see (25, 61)).  576 

In line with previous studies (28–30, 32), we only examined the ability of generative models 577 

to predict binary network topology. However in empirical connectomes, edges have weights which 578 

span several orders of magnitude (63). Since physiological factors which wire the brain are linked 579 

to variation in connectivity strength (58), future work should look to adapting generative models to 580 

produce weighted networks. Extending the framework developed here to capture weighted network 581 

properties represents an important extension of our work.   582 

Finally, while numerous studies have used generative models, they have been fitted to 583 

connectomes generated using different preprocessing pipelines, thresholding methods, 584 

parcellations, one or both hemispheres, and many other methodological variations. As the topology 585 

of brain networks can differ based on how the data were processed (64–66), it is possible that such 586 

variations may influence model performance. For example, studies using higher-resolution 587 

parcellations comprising ≥ 100 nodes have encountered difficulty in replicating the spatial 588 

embedding of network hubs (5, 32), whereas one study using a lower-resolution parcellation of 68 589 

nodes performed better in relation to node degree (30). Moreover, studies using probabilistic rather 590 

than deterministic tractography have identified alternative cost-topology models to the matching 591 

index model as offering the best fit to empirical data (5). A better understanding of how model 592 

performance depends on data preprocessing will be essential if the field is to converge on a 593 

parsimonious consensus model.  594 

3.2 Conclusions  595 

We advance a framework for modeling the influence of cost-topology trade-offs in brain 596 

network development that allows fair comparison between models of different complexity, which 597 

captures developmental changes in brain geometry, and which can be used to incorporate additional 598 

physiological constraints. We show that simple, physiologically constrained models offer more 599 

accurate accounts of human brain topology than models relying on more abstract topological rules 600 

of the connectome, but that all generative models have trouble replicating topographic properties. 601 

Taken together, our findings suggest that geometric constraints and developmental variations in 602 
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regional transcriptional profiles may conspire to shape both the complex topological properties and 603 

specific spatial embedding of macroscale brain network architecture.  604 

4 Methods 605 

4.1 Data 606 

We used data from the Human Connectome Project (HCP), randomly selecting images for 607 

100 unrelated participants (49 female, age mean ± standard deviation: 28.79 ± 3.67).  Data were 608 

acquired on a customized Siemens 3T Connectome Skyra scanner at Washington University in St 609 

Louis, Missouri, USA using a multi-shell protocol for the DWI with the following parameters: 1.25 610 

mm3 voxel size, TR = 5520 ms, TE = 89.5 ms, FOV of 210×180 mm, 270 directions with b = 1000, 611 

2000, 3000 s/mm2 (90 per b value), and 18 b = 0 volumes. Structural T1-weighted data were 612 

acquired with 0.7 mm3 voxels, TR = 2400 ms, TE = 2.14 ms, FOV of 224×224 mm (44, 67). A total 613 

of 100 participants were used due to the computational burden of running multiple different models 614 

for each participants network. 615 

4.2 Connectome mapping 616 

The HCP data were processed according to the HCP minimal preprocessing pipeline, which 617 

included normalization of mean b = 0 images across diffusion acquisitions and correction for EPI 618 

susceptibility and signal outliers, eddy-current-induced distortions, slice dropouts, gradient-non-619 

linearities and subject motion. The details of this pipeline are provided in more detail elsewhere 620 

(44, 68). T1-weighted data were corrected for gradient and readout distortions prior to being 621 

processed with FreeSurfer (44). 622 

To define network nodes, we parcellated the brain into 100 regions of approximately equal 623 

size. This parcellation was generated by randomly subdividing the fsaverage template surface. We 624 

only considered cortical regions for the parcellation as our approach to registering and aligning fetal 625 

brains did not extend to non-cortical areas. The parcellation was then registered from the template 626 

surface to the surface of each individual subject using a spherical registration procedure 627 

implemented in FreeSurfer (69), where it was converted to a volumetric image for subsequent 628 

network generation. We focus here only on the left cerebral hemisphere when performing 629 

generative modeling to follow past work (5, 28, 29, 32) and to reduce computational burden. While 630 

there are many different ways of parcellating human brain imaging data, we took a pragmatic view, 631 

requiring that a) parcels were of approximately equal size, since variations in regional size can 632 

affect many nodal properties, such as node degree; and b) the resulting networks were small enough 633 
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that they could be modelled with sufficient computational efficiency, due to the large number of 634 

model iterations that we ran. Examining how model performance varies across different 635 

parcellations and data processing strategies is an important extension of the current work. 636 

Deterministic tractography was performed using the Fiber Assignment by Continuous 637 

Tractography (FACT) algorithm (70, 71) as implemented in MRtrix3 (72). The algorithm 638 

propagates streamlines in the direction of the most collinear fiber orientation estimated within the 639 

voxel in which the streamline vertex resides. We defined one fiber orientation in each voxel by 640 

estimating the diffusion tensor using iteratively reweighted linear least squares (73) and then 641 

calculating the primary eigenvector of water diffusion. A total of 10 million streamlines were 642 

generated for tractography, with a maximum curvature of 45° per step. Streamline seeds were 643 

preferentially selected from areas where streamline density was under-estimated with respect to 644 

fiber density estimates from the diffusion model (74). Anatomically Constrained Tractography was 645 

used to further improve the biological accuracy of streamlines (75). To create a structural 646 

connectivity matrix, streamlines were assigned to each of the closest regions in the parcellation 647 

within a 5mm radius of the streamline endpoints (76), yielding an undirected 100 × 100 binary 648 

connectivity matrix (density 0.14 ± 0.01). 649 

4.3 Mapping developmental changes in cortical geometry  650 

To estimate developmental changes in cortical size and shape we obtained MRI scans from 651 

a public database of fetal MRIs (45, 46) acquired from 21-38 weeks GA. Most evidence suggests 652 

that the majority of axons form in this period, with nearly all inter-regional connections being 653 

formed by birth (77, 78). We therefore restricted our focus to this developmental window, but note 654 

that our framework can be flexibly extended to include estimates of post-natal cortical geometry. 655 

The fetal scans are released as group average templates of scans available at each timepoint. 656 

For each brain, we manually segmented the T1 weighted images using ITK-snap (79) to label the 657 

white-matter mask, as existing automated segmentation algorithms suffer from poor accuracy due 658 

to the inherently poor tissue contrast in fetal images. Surfaces were constructed from the white-659 

matter mask and smoothed using a heat kernel smoothing algorithm (80) and up-sampled by a factor 660 

of four (using four-split spline interpolation) to ensure an adequate number of vertices were 661 

available to perform the surface-based registration. For each extracted surface, we estimated maps 662 

of sulcal depth and projected the surface to a sphere using FreeSurfer (version 5.3).  663 

To match these prenatal surfaces to the adult cortical surfaces, we used the Multimodal 664 

Surface Matching (MSM) algorithm (47). MSM matches an input and reference surface via their 665 

spherical projections. The algorithm warps the vertices on the input surface to maximize the 666 
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similarity between a specified feature (in the case of this study, sulcal depth) of the two surface 667 

meshes while also minimizing the extent of this distortion (47). Additionally, higher-order clique 668 

reduction was used to improve surface regularization (48). This approach was used to register each 669 

fetal surface to the MNI 305 average surface template (fsaverage). More specifically, to prevent 670 

any bias due to the direction of registration (81), we took the average result of the registration of 671 

the fetal to the adult and the adult to the fetal surfaces (i.e., the mean coordinates of corresponding 672 

pairs of vertices in the two registrations was taken). This procedure allowed us to register the adult 673 

parcellation to each fetal surface, thus enabling us to track the spatial location of each network node 674 

through development. 675 

To ensure the accuracy of our cortical surface model, we calculated cortical surface area 676 

and inter-regional fiber-distance distributions at each timepoint. The total surface area of each fetal 677 

brain showed an approximately linear increase over time (Fig. 2B). These values and trends are 678 

similar to those found in other studies reporting surface area changes in this developmental period 679 

(82, 83). Changes in estimated fiber distance for all possible pairs of brain regions are shown in 680 

Fig. 2C and confirm that distances between nodes gradually increase throughout development. 681 

4.4 Estimating wiring costs 682 

A true estimate of neuronal wiring costs requires a full consideration of the metabolic 683 

resources required to form and maintain connections between neurons. The data required for such 684 

consideration at the level of the entire brain are currently unavailable. As a proxy, most investigators 685 

use the physical distance of a connection to index wiring cost, under the assumption that longer 686 

connections require greater cellular material and physical space, and thus consume greater 687 

metabolic resources (2). Most studies in the field have approximated connection distances using the 688 

Euclidean distance between brain regions (5, 28, 29, 32). This approach can under-estimate actual 689 

fiber distances, as Euclidean distances do not account for the complex geometry of the cortex and 690 

do not track actual fiber trajectories through the white-matter volume. This is an especially pertinent 691 

consideration when assessing developmental changes in wiring costs, as the formation of sulci and 692 

gyri represents a prominent geometric change that may significantly alter distances between cortical 693 

areas over time. We thus aimed to more closely estimate actual fiber distances in our analysis by 694 

approximating the physical paths between brain regions that pass through the white-matter volume.  695 

While it is straightforward to measure the length of reconstructed tracts, our models require 696 

wiring-cost estimates for all possible connections, including those that have not been empirically 697 

constructed, across different developmental time points. We therefore used the following procedure 698 

to generate such estimates. First, we downsampled the cortical surface using MATLAB’s 699 
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reducepatch command (fig. S7A) so that only 15% of the original number of vertices remain (fig. 700 

S7B). This step preserves the shape of the brain but ensures efficient computation. Second, for each 701 

vertex in the downsampled surface model, we found a corresponding point located 0.1 mm interior 702 

and perpendicular to the surface (this step avoids precision issues that can occur in subsequent steps; 703 

fig. S7C). Third, we used ray tracing to draw a line segment between every pair of subsurface points 704 

and assess if this segment intersects the original surface mesh (figs. S7D-E). Fourth, a direct vertex 705 

connection matrix, ], was defined where each element ]^_ indicated the Euclidean distance 706 

between vertices ` and a if a line segment that did not intersect the surface could be drawn between 707 

their corresponding subsurface points; otherwise ]^_ = 0. Finally, Dijkstra’s algorithm was run on 708 

the ] matrix to find the shortest distance to connect each vertex through the interior of the surface 709 

(fig. S7F). We then took the average distance between all pairs of vertices in ROIs � and � to estimate 710 

the minimum possible fibre distance between each region/node. Note that the actual distances of 711 

fibers between regions are likely larger as they will be affected by factors such as fiber volume, 712 

ventricles, and subcortical structures. Our approach nonetheless offers a more accurate 713 

approximation of actual fiber distances than Euclidean distances.  714 

4.5 Transcriptomic data 715 

We constrained our generative models using transcriptomic data from the Allen Human 716 

Brain Atlas, which comprises 3702 spatially distinct tissue samples taken from six neurotypical 717 

postmortem adult brains (55). Across these brains, samples from 58,692 probes, distributed across 718 

cortical, subcortical, brainstem and cerebellar regions, quantify the transcriptional activity of 719 

20,737 genes. As only two of the brains in the dataset sampled the right hemisphere, we 720 

exclusively focused our analysis on the left cortex. The preprocessing procedures applied to this 721 

data are described in detail elsewhere (5, 56). Briefly, genes were assigned to probes using the 722 

Re-Annotator toolbox, resulting in 45,821 probes and a corresponding 20,232 genes being 723 

selected. Samples annotated to the brainstem and cerebellum were removed, then intensity-based 724 

filtering was used to exclude probes which did not exceed background noise in more than 50% of 725 

samples. From the remaining 31,977 probes and 15,746 genes that survived filtering, a 726 

representative probe for each gene was selected based on the highest correlation to RNA 727 

sequencing data in two of the six brains. Samples were classified based on their hemisphere 728 

(left/right) and structural assignment (cortex/subcortex) assigned to regions of the 100 node 729 

parcellation by a) generating a parcellation for each doner specific brain and b) assigning samples 730 

to the closest region that matched their hemisphere and structural assignment within 2 mm of the 731 

parcellation voxels. Any samples assigned to subcortical or left regions were removed. Gene-732 
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expression measures were normalized within each region by first applying a scaled robust 733 

sigmoid normalization for every sample across genes, and then for every gene across samples. 734 

This normalization yields estimates of the relative expression of every gene across regions when 735 

controlling for donor-specific differences in gene expression. By averaging the normalized 736 

expression measures in each region across donor brains, we obtained a matrix of expression 737 

values for 10,027 genes in 99 regions (one region was removed as no samples could be assigned 738 

to it). We focused on a subset of 1634 genes that have previously been identified as expressed in 739 

human brain tissue (54). To quantify CGE for each pair of regions, we estimated the Pearson 740 

correlation between the normalized expression measures of the 1634 genes available after pre-741 

processing.  742 

The gene expression measures we used were obtained in adult specimens and the resulting 743 

CGE estimates may not directly reflect expression in the developing brain. While many genes show 744 

neotenous expression patterns (84) many others show highly variable expression patterns though 745 

development (85). Present transcriptional atlases of the developing human brain lack the anatomical 746 

coverage to allow estimation of whole-brain CGE profiles (62), although analyses in mouse indicate 747 

a predictable scaling rule in the distance dependence of CGE throughout development (86). As the 748 

coverage of these atlases improves, developmentally varying CGE estimates could be readily 749 

incorporated into the growth class of models introduced here. 750 

It is well-documented that the level of transcriptional coupling between two regions 751 

declines as an approximately exponential function of the distance between them (22, 23, 56, 86). 752 

This spatial autocorrelation is physiologically meaningful and may be fundamental to the 753 

relationship between gene expression and brain connectivity (23). However, it can also be 754 

informative to disentangle CGE estimates from their distance dependence. We therefore 755 

incorporated two types of CGE estimates into our generative models: (1) CGE estimates corrected 756 

for their intrinsic spatial autocorrelation (cCGE); and (2) uncorrected, raw CGE estimates 757 

(uCGE). The cCGE estimates were obtained by fitting an exponential function with the form 758 

?(�) = QbHc1/de + Qf, where Qb = 1.12, Q( = 0.023, and Qf = −0.27 (distances along the 759 

cortical surface were used to calculate this function, as done in (56)). The residuals of this fit were 760 

used in the modeling as cCGE values, which for each pair of regions was defined as ,<=>�� =761 

<=>�� − ?(���). The cCGE and uCGE estimates were remapped to the positive range by adding a 762 

constant, , = 1, to all values, to ensure that our models did not return negative connection 763 

probabilities. As such, the scaling exponent   applied to CGE estimates in our models serves to 764 

strongly weight pairs of regions with positive compared to negative CGE values. 765 
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4.5 Microstructural profile data 766 

In addition to transcriptional coupling, we investigated two measures of microstructural 767 

profile covariance (MPC) between regions. One used histological data from the BigBrain atlas (51), 768 

a Merker-stained 3D volumetric histological reconstruction of a human brain (MPCHIST). Following 769 

Paquola et al. (52, 57), we constructed 50 equivolumetric surfaces between the white and pial 770 

surface boundaries and then sampled the intensity values along these surfaces at each vertex. 771 

MPCHIST was then obtained by taking the partial correlation of regional mean intensity profiles 772 

whilst controlling for the cortex-wide mean intensity profile (as with the CGE models, MPC results 773 

are transformed into the range 0-2). MPCHIST can thus be interpreted as a measure of inter-regional 774 

similarity in variations of cell density and size through the cortical depth.  775 

To estimate MPCT1/T2, we applied a similar approach to the T1/T2-weighted ratio obtained 776 

with in vivo MRI in an independent sample of 197 unrelated healthy adults from the Human 777 

Connectome Project. For each subject, 12 equivolumetric surfaces between the inner and outer 778 

cortical surfaces were constructed and used to sample T1/T2 values across each vertex (52). MPC 779 

was then calculated as with the BigBrain atlas, and an average was taken across all subjects to 780 

obtain a single MPCT1/T2 data matrix. To the extent that the T1/T2-weighted ratio indexes 781 

intracortical myelin (53), MPCT1/T2 can be interpreted as an indirect measure of inter-regional 782 

similarity in myeloarchitectonic variations through the cortical depth. Both MPCHIST and MPCT1/T2 783 

show subtle distance-related trends that are not easily accommodated with bulk corrections. We 784 

therefore consider only raw, uncorrected estimates in our analyses. 785 

4.6 Generative modeling 786 

Basic model characteristics 787 

Several different types of generative models for connectomes have been proposed (see 788 

Betzel & Bassett, 2017 for a review). We focus here on the cost-topology trade-off model, as 789 

defined in Eq. 1, which has been extensively studied in the content of human brain networks (5, 790 

28–30, 32). The model defines a relation between wiring cost (e.g., ���) and topology (e.g., ���) that 791 

influences the probability of forming an edge between two nodes � and �. Edges are added one at a 792 

time to the network, with the topology value being recalculated at each iteration and connection 793 

scores updated accordingly. The model is iterated until the number of edges in the synthetic 794 

networks matches the empirical data.  795 

Following prior work (28, 29), we focus here only on modeling the binary topology of the 796 

connectome. Additionally, while previous work has identified an initial set of connections that act 797 
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as a seed for the model (29, 30, 32), we initiate our models from an empty connection matrix to 798 

avoid imposing arbitrary structure on the model network. Another distinction between our 799 

implementation and past work is that we used an exponential penalty for the wiring cost term in our 800 

models, whereas others have used a power-law form (5, 30, 32) or have evaluated both exponential 801 

and power-law penalties (28, 29). We focus on an exponential penalty for two reasons. First, there 802 

is ample empirical evidence that, across different species and resolution scales, the connection 803 

probability between pairs of neural elements shows an approximately exponential decay as a 804 

function of their distance; the so-called exponential distance rule (EDR) (19–23, 27, 88). Our 805 

approach thus offers a natural comparison to this extant literature. Second, the scale-invariance of 806 

the power-law preserves relative connection distances as a function of global changes in brain size, 807 

which precludes an opportunity to study how developmental changes in cortical geometry and 808 

associated wiring costs influence connection probabilities in the model, estimated as outlined 809 

below. 810 

Estimating connection probabilities 811 

The model defined in Eq. 2 is used to determine the probability of forming a connection 812 

between two nodes. It is important to note that ��� is not itself the actual connection probability, 813 

but rather indicates a connection score, such that higher values (indicating more viable 814 

connections) are more likely to be formed. The advantage of using ��� as a connection score 815 

rather than a direct probability is it allows the model to be formulated such that density can be 816 

strictly controlled, which is important because many topological properties depend on the number 817 

of edges in the network. 818 

Edges are preferentially sampled according to the edge’s own � value, divided by the sum 819 

of all other possible � values (i.e., the scores for other edges which could possibly be formed), 820 

which we term A��. A single edge is selected at each model iteration according to the probability 821 

A��, and this procedure is repeated until the desired number of edges have been added into the 822 

network. 823 

Accurately modeling cost-topology trade-offs 824 

The models that we consider here form connections probabilistically and one at a time 825 

according to a specific set of wiring rules. The simplest such model that we evaluate considers only 826 

spatial factors driven by an EDR, 827 

��� = exp�−�����. (4) 828 
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Under this model, connections are formed at random, subject to the constraint that the connection 829 

decays exponentially as a function of the distance between two nodes.  830 

 Trade-off models commonly studied in the literature include a topological term and have 831 

the general form as described in Eq. 1; i.e., ��� = exp(−����) × ����. The topological term ��� is 832 

intended to counteract the distance penalty imposed by the exponential function if a given 833 

connection augments the topological complexity of the connectome. Under this multiplicative 834 

formulation of Eq. 1, the influence of the distance and topological terms on <��� is modified via a 835 

non-linear (power-law or exponential) function. This formulation influences how topology and 836 

distance terms interact. In particular, it has the practical effect of ensuring that the topological term 837 

only influences the connection probabilities of short-range connections. As an example, Fig. 6A 838 

shows the dependence of <��� on the connection distance, modelled using an exponential decay for 839 

���. The parameters for the distance term were selected from results obtained in this paper or 840 

previous work (29). For a given distance penalty, different values of ���� only influence the 841 

connection score, <���, for connections shorter than 55 mm. The effect is exacerbated when using 842 

a power-law penalty on the distance term (Fig. 6B). It is thus very difficult for the topological term 843 

to overcome the strong penalty on long-distance edges because the topological term is implemented 844 

as a non-uniform multiplicative scaling factor across different values of distance. This behavior 845 

does not align with a cost-value trade-off, in which the topological value of an edge should 846 

counteract its wiring cost, even over long distances. Indeed, interpretation of the model’s parameter 847 

estimates is ambiguous due to the complex inter-dependence of model parameters and the fact that 848 

they exert two effects in the model: (1) they control the relative relations between different values 849 

within a given term; and (2) they control how the different terms scale relative to each other. 850 

Because both objectives need to be achieved with the same non-linear function, it is difficult to 851 

disentangle the extent to which either is being fulfilled.  852 

To avoid these problems, we can formulate an additive wiring rule 853 

��� = exp�−����� + "���� . (5) 854 

This form allows a single parameter, ", to control the importance of ��� relative to ��� in 855 

determining connection scores. The additive form of Eq. 5 ensures that, for a given value of  , the 856 

impact of topology is linear and consistent across all connections, as shown in Fig. 6C over different 857 

���� and " values. Under this formulation, each term can vary independently, meaning that 858 

parameters can be selected such that long-range connections can benefit from having a greater ���� 859 

value. This formulation is more consistent with common notions of cost-topology trade-offs, as 860 

topology can be sufficiently weighted to overcome the wiring cost of a connection. Moreover, " is 861 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462379doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462379
http://creativecommons.org/licenses/by/4.0/


  
 

  Page 30 of 39 
 

readily interpretable as the relative weighting assigned to topology vs connection distance in 862 

determining connection probabilities, such that higher values indicate a stronger contribution of 863 

topology to ���. 864 

 865 

Fig. 6. Practical demonstration of multiplicate and additive formulations of the trade-off model. (A) 866 <���  values calculated over distance with varying values of ��� � under a classical multiplicative formulation (e.g., Eq. 867 
1) with an exponential distance penalty. (B) <���   values calculated over distance with varying values of ��� � under a 868 
classical multiplicative formulation with a power-law distance penalty. (C) <���   values calculated over distance with 869 
varying values of ��� � under our new additive formulation (e.g., Eq. 2) with an exponential distance penalty. For the 870 
multiplicative formulation, changes in ��� � (which could either be due to changes in ���  or  ) practically only affect 871 
short-range connections (A, B). Under the additive formulation (C), variations in ��� can influence <��� over a broader 872 
range of distances. 873 

 874 

 To interpret " as controlling a trade-off between wiring cost and topology in Eq. 5, the 875 

distance and topology terms must vary on similar scales. We thus normalize both terms to have a 876 

maximum of 1 by dividing each term by its maximum over for all edges that have not yet been 877 

added to the network. Our model formulation then becomes  878 

��� = exp�−�����
max�exp(−��)� + " # ����

max(��)$ . (6) 879 

Incorporating developmental changes in cortical geometry  880 

 Generative models of human brain networks have traditionally only considered wiring costs 881 

estimated using physical distances in the adult brain. These ‘static’ models thus neglect the potential 882 

impact that developmental changes in brain size and shape, occurring when connections are actually 883 

formed, can have on wiring costs. To incorporate these developmental changes, we estimated, for 884 

each of the 18 timepoints for which we have fetal scans, a unique inter-regional distance matrix 885 

using the ray-tracing procedure described above. When taken with the adult data, this yielded a total 886 

of 19 time points. In principle our approach could be extended to include additional time points 887 

between birth and adulthood, but we focus here on the prenatal stage because this is when the bulk 888 
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of inter-regional connections are formed (77, 78, 89). We add connections to our model networks 889 

in distinct stages, constrained by the corresponding developmental time point, to approximate the 890 

effect of changes in brain size and shape. We thus introduce a time-varying wiring cost, ���(K) 891 

which indicates the inter-nodal distance between nodes � and � at timepoint K, yielding Eq. (3). 892 

A critical question in this model concerns the rate at which connections should be added to 893 

the model at different time points. Detailed empirical data to answer this question are lacking. One 894 

study found that expression of GAP-43, a marker of axonal growth, was highly and stably expressed 895 

between 21 and 43 weeks post conception, suggesting that this is a period of sustained axonal 896 

formation (89). Studies of axonal numbers in the developing rhesus monkey have suggested that 897 

the number of axons increases linearly during gestation up until birth (77, 78). We thus use the 898 

simplest possible formulation and add connections at a constant rate at each timepoint K, but note 899 

that our framework is flexible enough to enable explorations of alternative developmental 900 

trajectories.  901 

Model evaluation 902 

Model performance was evaluated by comparing the model and empirical node distributions 903 

of degree, betweenness, and clustering, and the distribution of connection distances across all edges, 904 

as in prior work (Fig. 1D) (28, 29). These properties are classical features that are often used to 905 

describe brain-network topology. In each case, the distributions are compared using the 906 

Kolmogorov-Smirnov (��) statistic, which is quantified as the maximal distance between the 907 

empirical distribution functions of two samples, in which lower values indicate greater similarity 908 

between distributions (i.e., between the distribution of a topological property in the empirical and 909 

model network). Model performance was defined as the maximum �� statistic observed across the 910 

four-benchmark metrics,  911 

max(��) = max(��1, ��&, ��g , ��h) , (7) 912 

where ��1, ��&, ��g, and ��h are the �� statistic of the degree, clustering, betweenness, and edge 913 

length distributions, respectively. In this formulation of model fit, performance is determined by 914 

the worst-fitting property. We used the same procedure to assess the performance of each model. 915 

Model optimization 916 

To find the optimal values for the parameters �,  , and ", in each model for each participant, 917 

we used an optimization method developed previously (29), implemented as follows: 918 
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1) we selected a random sample of 2000 points in the parameter space defined by � (evaluated 919 

over the range −2 to 10cbi) and   (varied over the range −8 to 8) and/or " (varied between 920 

0 to 8; however when no   was included in the additive formulation, " varied over the range 921 

0 to 0.05 for the clu-avg, clu-max, clu-diff, deg-avg, deg-max, deg-diff, and deg-prod 922 

models, for all others it varied between 0 to 8). For CGE and MPC models,   was varied 923 

over a greater range (CGE: −50 to 250, MPC: 0 to 50). 924 

2) at each point, which represents a specific combination of �, and   or " values, we generated 925 

a network using each of the newly defined parameters (thus making 2000 synthetic 926 

networks) and calculate the max(��) fit statistic. 927 

3) once all networks were evaluated, we used a Voronoi tessellation to identify regions (cells) 928 

of the parameter space associated with low fit statistics. A further 2000 points in parameter 929 

space were preferentially sampled from each cell according to the relative probability j<&cg, 930 

where j<& is the max(��) of cell ,, and k controls the likelihood with which cells with a 931 

low max(��) will be sampled (i.e., a larger value of k indicates a greater likelihood of 932 

sampling from low max(��) cells).  933 

Steps 2 and 3 were repeated five times, resulting in a total of 10,000 points being evaluated. At 934 

each repetition, the probability of sampling cells with better fits is increased (going from k =935 

{0, 0.5, 1.0 ,1.5, 2.0}), thus converging to an approximate optimum. This optimization was 936 

conducted for each model fitted to each individual participants’ network. An advantage of this 937 

optimization approach is that it allows for adequate sampling across the entire parameter space to 938 

visualize how changes in parameters affect the model and for the identification of a global 939 

(approximate) optimum (Fig. 1E). 940 

Cross-validation 941 

The one-parameter spatial model has lower complexity than models that include topology, 942 

which have two free parameters. Our additive formulation has three free parameters in total. To 943 

enable fair comparison across models with varying complexity and to minimize over-fitting, we 944 

developed a leave-one-out cross-validation procedure to assess out-of-sample model performance 945 

and generalizability. For each participant n in our sample of o individuals, we generated synthetic 946 

networks using the best-fitting parameters obtained for the other o − 1 participants. We cross-947 

validated results with respect to the optimal parameters for the other o − 1 participants to account 948 

for variability across connectomes and to assess out-of-sample performance. For each such 949 

parameter combination drawn from the other participants, we iterated the model 20 times to account 950 
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for variability in the stochastic models. We took the mean fit (of the test statistic, max(��)) across 951 

these 20 runs, and then took the average of these means over the o − 1 parameter combinations as 952 

our cross-validated fit statistic, ���, for each participant. This approach allowed us to obtain a 953 

distribution of ��� values over participants for each model (Fig. 1E). Unless stated otherwise, all 954 

results are reported using this cross-validated fit statistic. While alternative cross-validation 955 

procedures are possible, we deemed this leave-one-out procedure to be the most computationally 956 

expedient, given the large number of model iterations that were required. To compare ��� for given 957 

models, we used Bonferroni corrected (corrected for 325 tests for comparisons between topological 958 

static and growth models; 120 tests for comparisons between physiological models), Wilcoxon 959 

signed-rank tests. This non-parametric test was used as ��� was not always normally distributed.  960 

4.7 Modeling brain network topography 961 

According to the procedures outlined above, model fits were optimized for reproducing the 962 

statistical properties (node- and edge-level distributions) of network topology. As previously stated, 963 

the same distribution may be realized with different spatial embeddings, and it is the spatial 964 

embedding or topography that defines the roles ascribed to brain regions, such as which areas are 965 

network hubs. We thus sought to quantify the degree to which the models were also able to capture 966 

the spatial embedding of the same topological properties used in the model-fitting procedure; i.e., 967 

degree, clustering, betweenness, and mean nodal edge length. To this end, we evaluated the 968 

Spearman correlation between the nodal values estimated for each property in the empirical and 969 

synthetic networks. A high correlation implies that the generative model can accurately capture the 970 

relative nodal rankings, and thus spatial embedding, of that particular topological measure. 971 
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Supplementary Text 

To validate our new additive formulation of the cost-topology trade-off (Eq. 2) model, we 

compared its performance to the classical multiplicative form (Eq. 1). We first considered the 

additive formulation without the � parameter (i.e., without non-linear scaling of the topology 

term). Under this additive formulation, 10 of the 12 trade-off models, all of which are based on 

degree and clustering, show comparable performance to the spatial model. In these 10 trade-off 

models, � ≈ 0, indicating that variations in topology have minimal influence on model 

performance and that wiring is largely determined by spatial constraints. The two additive trade-

off models that perform better than the spatial model correspond to the homophilic matching and 

neighbor models. Critically, the mean ��� of the additive matching index models (0.23 ± 0.01) 

is significantly lower than the multiplicative matching index model (0.27 ± 0.01, � < 0.0001; it 

is also significantly lower than the multiplicative clu-avg model which was the best-fitting 

multiplicative model on average: 0.26 ± 0.02,), � < 0.0001 (fig. S1A). Thus, when considering 

the best-fitting models, the additive formulation offers a more accurate representation of the data 

than the multiplicative formulation. Examining the types of edges formed by the empirical and 

best fitting networks, the additive matching model shows the most notable improvement in 

capturing mid- to long-range connections when compared to its multiplicative counterpart (fig. 

S2). This result confirms our intuition that the additive formulation is more effective in trading-

off topological value with distance in determining connection probabilities. 

We next evaluated whether an additional non-linear scaling of the topology term ��� 

improves model performance. To this end, we compared the performance of additive models 

with and without the scaling exponent �. We found that the non-linear scaling improves the fit of 

all trade-off models relative to strictly linear variants of the additive models (fig. S1B; the best 

non-linear additive models are also superior to all multiplicative models, fig. S1C), but the 

improvement for the best-fitting matching index model was small (��� = 0.22 ± 0.01 for the 

non-linear additive model and ��� = 0.23 ± 0.01 for the additive model; fig. S1B). The superior 

performance of the non-linear additive model further suggests that the influence of topology on 

connection probabilities requires some non-linear scaling, such that regions with a high topology 

score (or low if � is negative) are disproportionately more likely to form a connection. 
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Fig. S1. Cross-validated ��� values for static generative models. The color of each violin plot indicates the 

topology metric used in the model: homophily is shown in blue, clustering in red, degree in green, communicability 

in orange, and geometric in purple. The white circle indicates the median of each distribution, while the horizontal 

black line indicates the mean. (A) ��� values for the additive (with no � parameter) and multiplicative model 

formulations. Each point in the distribution corresponds to the ���statistic obtained for one of the 100 individuals in 

our sample. (B) Comparison of ��� values for the additive and additive (with no � parameter) formulations. (C) ��� 

values for the additive and multiplicative model formulations. * � < 0.05 Bonferroni corrected (325 tests), 

Wilcoxon signed-rank test. The additive matching model achieves the best performance.  
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Fig. S2. Kernel density plot of connection lengths for matching index models. For the best matching model 

network for each participant, the kernel density of its edge lengths was calculated and then averaged. This was done 

for each model formulation. Additive formulations more closely match the empirical data, and are better able to 

reproduce long-range connections.   
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Fig. S3. Kolmogorov-Smirnov (KS) statistics for each cross-validated static and growth model network. Each 

violin plot shows the distribution of KS statistics across all model networks used to derive the cross validated fit ��� 

for static (A) and growth (B) model variants, for each topological feature used in the model fitting procedure; namely, 

degree, clustering, betweenness, and edge length distributions. The white circle indicates the median of each 

distribution, while the horizontal black line indicates the mean. The number above each violin plot indicates the 

percentage of times that respective KS statistic determined model fitness i.e., max(��).   
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Fig. S4. Model parameters of best-fitting static and growth models. (A) Values of  . Higher values indicate a 

stronger distance penalty. (B) Values of �. Higher values indicate a stronger non-linear scaling of topology, such that 

high values exert a proportionally greater influence on connection probability. (C) Parameters for �. Higher values 

indicate a stronger bias of topology relative to wiring cost on connection probability. The color of each violin plot 

indicates the class of topology metric used in the model: homophily is shown in blue, clustering in red, degree in 

green, and spatial in purple. The white circle indicates the median of each distribution, while the horizontal black line 

indicates the mean. Growth models require a larger  , and thus stronger distance penalty, to achieve the best fits. 
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Fig. S5. Kolmogorov-Smirnov (KS) statistics for each physiological model network. Each violin plot shows the 

KS statistic for the relevant topological feature (node degree, node clustering, node betweenness, or edge length) for 

all networks used to calculate ��� for each participant. The white circle indicates the median of each distribution, 

while the horizontal black line indicates the mean. The number above each violin plot indicates the percentage of 

times that KS statistic determined model fitness i.e., max(��), which itself was used to derive the cross validated fit 

���.   
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Fig. S6. Evaluating model accuracy in capturing degree topography across the full parameter landscape. Each 

violin plot shows, across all parameters produced during optimization for all participants, the correlation between 

model and empirical node degree. The color of each violin plot indicates the topology metric used in the model while 

the white circle indicates the median of each distribution, while the horizontal black line indicates the mean.  
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Fig. S7. Example of connection distance estimation. (A) Simplified example of a cortical surface reconstruction 

with black points representing surface vertices. (B) The surface is downsampled so that only 15% of the original 

vertices remain. This step minimizes computational burden while preserving the shape of the surface. (C) Subsurface 

points (red dots) are calculated using the vertex normal to avoid precision issues. (D) Ray tracing is used to draw line 

segments between pairs of subsurface points. Green lines show valid trajectories that do not intersect the surface. Red 

lines show invalid trajectories which are not used for further estimation. (E) All pairs of subsurface points are 

evaluated. If a valid line segment can be drawn between them, then a direct connection (dotted line) is drawn between 

the corresponding vertices to create a direct connection network. (F) Dijkstra’s algorithm is run on the resulting 

network of direct pairwise direct connections to identify the shortest within-volume distance (i.e., fiber distance) 

between vertex pairs. Green line shows an example trajectory uses to estimate fiber distance between two vertices. 

The trajectory used for estimating the Euclidean distance between those same points is shown by the red dotted line. 
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