001     903469
005     20220103172030.0
024 7 _ |a 10.1021/acsphotonics.1c00617
|2 doi
024 7 _ |a 2128/29493
|2 Handle
024 7 _ |a altmetric:111922525
|2 altmetric
024 7 _ |a WOS:000677543700038
|2 WOS
037 _ _ |a FZJ-2021-05141
082 _ _ |a 530
100 1 _ |a Talamas Simola, Enrico
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a CMOS-Compatible Bias-Tunable Dual-Band Detector Based on GeSn/Ge/Si Coupled Photodiodes
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639658394_28945
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Infrared (IR) multispectral detection is attractingincreasing interest with the rising demand for high spectralsensitivity, room temperature operation, CMOS-compatible devices.Here, we present a two-terminal dual-band detector, which providesa bias-switchable spectral response in two distinct IR bands. Thedevice is obtained from a vertical GeSn/Ge/Si stack, forming adouble junction n-i-p-i-n structure, epitaxially grown on a Si wafer.The photoresponse can be switched by inverting the bias polaritybetween the near and the short-wave IR bands, with specificdetectivities of 1.9 × 1010 and 4.0 × 109 cm·(Hz)1/2/W, respectively.The possibility of detecting two spectral bands with the same pixelopens up interesting applications in the field of IR imaging andmaterial recognition, as shown in a solvent detection test. Thecontinuous voltage tuning, combined with the nonlinear photoresponse of the detector, enables a novel approach to spectral analysis,demonstrated by identifying the wavelength of a monochromatic beam.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: Nanostrukturierte GeSn Beschichtungen für die Photonik (GESNAPHOTO) - Teilvorhaben: Entwicklung neuartiger Detektoren und Emitter basierend auf GeSn Schichtstrukturen (13N14159)
|0 G:(BMBF)13N14159
|c 13N14159
|x 1
536 _ _ |a Verbundprojekt: Erforschung nanoelektronischer Höchstleistungs-Bauelemente für innovative Elektronik auf Basis neuer Materialsysteme - ForMikro-SiGeSn-NanoFETs - , Teilvorhaben: CVD-basierte Herstellung von SiGeSn-Halbleiterheterostrukturen und vertikalen (16ES1074)
|0 G:(BMBF)16ES1074
|c 16ES1074
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Kiyek, Vivien
|0 P:(DE-Juel1)180877
|b 1
700 1 _ |a Ballabio, Andrea
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schlykow, Viktoria
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Frigerio, Jacopo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zucchetti, Carlo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a De Iacovo, Andrea
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Colace, Lorenzo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Yamamoto, Yuji
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Buca, Dan
|0 P:(DE-Juel1)125569
|b 11
|e Corresponding author
700 1 _ |a Isella, Giovanni
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1021/acsphotonics.1c00617
|g Vol. 8, no. 7, p. 2166 - 2173
|0 PERI:(DE-600)2745489-7
|n 7
|p 2166 - 2173
|t ACS photonics
|v 8
|y 2021
|x 2330-4022
856 4 _ |u https://juser.fz-juelich.de/record/903469/files/2021%20ACS%20photonics%20-GeSn%20dual%20sensor.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903469
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Politecnico di Milano
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Politecnico di Milano
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Università Roma Tre
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS PHOTONICS : 2019
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS PHOTONICS : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21