000903470 001__ 903470
000903470 005__ 20220923174113.0
000903470 0247_ $$2doi$$a10.1021/acsaem.1c01576
000903470 0247_ $$2Handle$$a2128/31664
000903470 0247_ $$2WOS$$aWOS:000678382900105
000903470 037__ $$aFZJ-2021-05142
000903470 082__ $$a540
000903470 1001_ $$0P:(DE-HGF)0$$aSpirito, Davide$$b0$$eCorresponding author
000903470 245__ $$aThermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry
000903470 260__ $$aWashington, DC$$bACS Publications$$c2021
000903470 3367_ $$2DRIVER$$aarticle
000903470 3367_ $$2DataCite$$aOutput Types/Journal article
000903470 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661168377_2171
000903470 3367_ $$2BibTeX$$aARTICLE
000903470 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903470 3367_ $$00$$2EndNote$$aJournal Article
000903470 520__ $$aEnergy harvesting for Internet of Things applications,comprising sensing, life sciences, wearables, and communications, requiresefficient thermoelectric (TE) materials, ideally semiconductors compatiblewith Si technology. In this work, we investigate the potential of GeSn/Gelayers, a group IV material system, as TE material for low-grade heatconversion. We extract the lattice thermal conductivity, by developing ananalytical model based on Raman thermometry and heat transport model,and use it to predict thermoelectric performances. The lattice thermalconductivity decreases from 56 W/(m·K) for Ge to 4 W/(m·K) byincreasing the Sn atomic composition to 14%. The bulk cubic Ge0.86Sn0.14alloy features a TE figure of merit of ZT ∼ 0.4 at 300 K and an impressive1.04 at 600 K. These values are extremely promising in view of the use ofGeSn/Ge layers operating in the typical on-chip temperature range.
000903470 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000903470 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903470 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000903470 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000903470 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b1$$eCorresponding author
000903470 7001_ $$0P:(DE-HGF)0$$aManganelli, Costanza Lucia$$b2
000903470 7001_ $$0P:(DE-HGF)0$$aZoellner, Marvin Hartwig$$b3
000903470 7001_ $$0P:(DE-HGF)0$$aCorley-Wiciak, Agnieszka Anna$$b4
000903470 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b5
000903470 7001_ $$0P:(DE-HGF)0$$aStoica, Toma$$b6
000903470 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000903470 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b8$$eCorresponding author
000903470 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b9
000903470 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.1c01576$$gVol. 4, no. 7, p. 7385 - 7392$$n7$$p7385 - 7392$$tACS applied energy materials$$v4$$x2574-0962$$y2021
000903470 8564_ $$uhttps://juser.fz-juelich.de/record/903470/files/ACS-AEM-full_text_preformat.pdf$$yOpenAccess
000903470 8564_ $$uhttps://juser.fz-juelich.de/record/903470/files/acsaem.1c01576.pdf$$yRestricted
000903470 909CO $$ooai:juser.fz-juelich.de:903470$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b1$$kFZJ
000903470 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b2
000903470 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IHP$$b4
000903470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
000903470 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Leeds$$b5
000903470 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Institute of Materials Physics, Romania$$b6
000903470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b7$$kFZJ
000903470 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
000903470 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000903470 9141_ $$y2021
000903470 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2019$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903470 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000903470 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000903470 920__ $$lyes
000903470 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000903470 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000903470 980__ $$ajournal
000903470 980__ $$aVDB
000903470 980__ $$aUNRESTRICTED
000903470 980__ $$aI:(DE-Juel1)PGI-9-20110106
000903470 980__ $$aI:(DE-82)080009_20140620
000903470 9801_ $$aFullTexts