001     903470
005     20220923174113.0
024 7 _ |a 10.1021/acsaem.1c01576
|2 doi
024 7 _ |a 2128/31664
|2 Handle
024 7 _ |a WOS:000678382900105
|2 WOS
037 _ _ |a FZJ-2021-05142
082 _ _ |a 540
100 1 _ |a Spirito, Davide
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Thermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry
260 _ _ |a Washington, DC
|c 2021
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661168377_2171
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Energy harvesting for Internet of Things applications,comprising sensing, life sciences, wearables, and communications, requiresefficient thermoelectric (TE) materials, ideally semiconductors compatiblewith Si technology. In this work, we investigate the potential of GeSn/Gelayers, a group IV material system, as TE material for low-grade heatconversion. We extract the lattice thermal conductivity, by developing ananalytical model based on Raman thermometry and heat transport model,and use it to predict thermoelectric performances. The lattice thermalconductivity decreases from 56 W/(m·K) for Ge to 4 W/(m·K) byincreasing the Sn atomic composition to 14%. The bulk cubic Ge0.86Sn0.14alloy features a TE figure of merit of ZT ∼ 0.4 at 300 K and an impressive1.04 at 600 K. These values are extremely promising in view of the use ofGeSn/Ge layers operating in the typical on-chip temperature range.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 1
|e Corresponding author
700 1 _ |a Manganelli, Costanza Lucia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zoellner, Marvin Hartwig
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Corley-Wiciak, Agnieszka Anna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ikonic, Zoran
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stoica, Toma
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 7
700 1 _ |a Buca, Dan Mihai
|0 P:(DE-Juel1)125569
|b 8
|e Corresponding author
700 1 _ |a Capellini, Giovanni
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1021/acsaem.1c01576
|g Vol. 4, no. 7, p. 7385 - 7392
|0 PERI:(DE-600)2916551-9
|n 7
|p 7385 - 7392
|t ACS applied energy materials
|v 4
|y 2021
|x 2574-0962
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/903470/files/ACS-AEM-full_text_preformat.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/903470/files/acsaem.1c01576.pdf
909 C O |o oai:juser.fz-juelich.de:903470
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161247
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a IHP
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a University of Leeds
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a National Institute of Materials Physics, Romania
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2019
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21