Home > Publications database > Thermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry > print |
001 | 903470 | ||
005 | 20220923174113.0 | ||
024 | 7 | _ | |a 10.1021/acsaem.1c01576 |2 doi |
024 | 7 | _ | |a 2128/31664 |2 Handle |
024 | 7 | _ | |a WOS:000678382900105 |2 WOS |
037 | _ | _ | |a FZJ-2021-05142 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Spirito, Davide |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Thermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry |
260 | _ | _ | |a Washington, DC |c 2021 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661168377_2171 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Energy harvesting for Internet of Things applications,comprising sensing, life sciences, wearables, and communications, requiresefficient thermoelectric (TE) materials, ideally semiconductors compatiblewith Si technology. In this work, we investigate the potential of GeSn/Gelayers, a group IV material system, as TE material for low-grade heatconversion. We extract the lattice thermal conductivity, by developing ananalytical model based on Raman thermometry and heat transport model,and use it to predict thermoelectric performances. The lattice thermalconductivity decreases from 56 W/(m·K) for Ge to 4 W/(m·K) byincreasing the Sn atomic composition to 14%. The bulk cubic Ge0.86Sn0.14alloy features a TE figure of merit of ZT ∼ 0.4 at 300 K and an impressive1.04 at 600 K. These values are extremely promising in view of the use ofGeSn/Ge layers operating in the typical on-chip temperature range. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a von den Driesch, Nils |0 P:(DE-Juel1)161247 |b 1 |e Corresponding author |
700 | 1 | _ | |a Manganelli, Costanza Lucia |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zoellner, Marvin Hartwig |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Corley-Wiciak, Agnieszka Anna |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Ikonic, Zoran |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Stoica, Toma |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 7 |
700 | 1 | _ | |a Buca, Dan Mihai |0 P:(DE-Juel1)125569 |b 8 |e Corresponding author |
700 | 1 | _ | |a Capellini, Giovanni |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1021/acsaem.1c01576 |g Vol. 4, no. 7, p. 7385 - 7392 |0 PERI:(DE-600)2916551-9 |n 7 |p 7385 - 7392 |t ACS applied energy materials |v 4 |y 2021 |x 2574-0962 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/903470/files/ACS-AEM-full_text_preformat.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/903470/files/acsaem.1c01576.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:903470 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161247 |
910 | 1 | _ | |a IHP |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a IHP |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a University of Leeds |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a National Institute of Materials Physics, Romania |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)125569 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-02-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL ENERG MATER : 2019 |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-04 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|