Hauptseite > Publikationsdatenbank > Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning > print |
001 | 903472 | ||
005 | 20230515091803.0 | ||
024 | 7 | _ | |a 10.1038/s41386-021-01051-0 |2 doi |
024 | 7 | _ | |a 0893-133X |2 ISSN |
024 | 7 | _ | |a 1740-634X |2 ISSN |
024 | 7 | _ | |a 2128/29439 |2 Handle |
024 | 7 | _ | |a altmetric:107625249 |2 altmetric |
024 | 7 | _ | |a pmid:34127797 |2 pmid |
024 | 7 | _ | |a WOS:000661452800002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05144 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pelin, Helena |0 0000-0001-8875-4285 |b 0 |e Corresponding author |
245 | _ | _ | |a Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning |
260 | _ | _ | |a Basingstoke |c 2021 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639137757_28324 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1–3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%; significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
542 | _ | _ | |i 2021-06-14 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2021-06-14 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ising, Marcus |b 1 |
700 | 1 | _ | |a Stein, Frederike |b 2 |
700 | 1 | _ | |a Meinert, Susanne |b 3 |
700 | 1 | _ | |a Meller, Tina |b 4 |
700 | 1 | _ | |a Brosch, Katharina |b 5 |
700 | 1 | _ | |a Winter, Nils R. |b 6 |
700 | 1 | _ | |a Krug, Axel |0 0000-0002-0564-2497 |b 7 |
700 | 1 | _ | |a Leenings, Ramona |b 8 |
700 | 1 | _ | |a Lemke, Hannah |b 9 |
700 | 1 | _ | |a Nenadić, Igor |b 10 |
700 | 1 | _ | |a Heilmann-Heimbach, Stefanie |b 11 |
700 | 1 | _ | |a Forstner, Andreas J. |0 P:(DE-Juel1)186755 |b 12 |
700 | 1 | _ | |a Nöthen, Markus M. |0 0000-0002-8770-2464 |b 13 |
700 | 1 | _ | |a Opel, Nils |b 14 |
700 | 1 | _ | |a Repple, Jonathan |b 15 |
700 | 1 | _ | |a Pfarr, Julia |b 16 |
700 | 1 | _ | |a Ringwald, Kai |b 17 |
700 | 1 | _ | |a Schmitt, Simon |0 0000-0003-4004-0587 |b 18 |
700 | 1 | _ | |a Thiel, Katharina |b 19 |
700 | 1 | _ | |a Waltemate, Lena |0 0000-0001-7331-0534 |b 20 |
700 | 1 | _ | |a Winter, Alexandra |b 21 |
700 | 1 | _ | |a Streit, Fabian |0 0000-0003-1080-4339 |b 22 |
700 | 1 | _ | |a Witt, Stephanie |0 0000-0002-1571-1468 |b 23 |
700 | 1 | _ | |a Rietschel, Marcella |0 0000-0002-5236-6149 |b 24 |
700 | 1 | _ | |a Dannlowski, Udo |b 25 |
700 | 1 | _ | |a Kircher, Tilo |b 26 |
700 | 1 | _ | |a Hahn, Tim |0 0000-0001-6541-3795 |b 27 |
700 | 1 | _ | |a Müller-Myhsok, Bertram |b 28 |
700 | 1 | _ | |a Andlauer, Till F. M. |0 0000-0002-2917-5889 |b 29 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41386-021-01051-0 |b Springer Science and Business Media LLC |d 2021-06-14 |n 11 |p 1895-1905 |3 journal-article |2 Crossref |t Neuropsychopharmacology |v 46 |y 2021 |x 0893-133X |
773 | _ | _ | |a 10.1038/s41386-021-01051-0 |g Vol. 46, no. 11, p. 1895 - 1905 |0 PERI:(DE-600)2008300-2 |n 11 |p 1895-1905 |t Neuropsychopharmacology |v 46 |y 2021 |x 0893-133X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903472/files/Pelin_etal_Neuropsychopharmacology_2021.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:903472 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)186755 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROPSYCHOPHARMACOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROPSYCHOPHARMACOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1515/medgen-2020-2006 |9 -- missing cx lookup -- |1 TFM Andlauer |p 39 - |2 Crossref |u Andlauer TFM, Nöthen MM. Polygenic scores for psychiatric disease: from research tool to clinical application. Medizinische Genet. 2020;32:39–45. |t Medizinische Genet |v 32 |y 2020 |
999 | C | 5 | |a 10.1186/s12888-017-1447-3 |1 LSE Seow |9 -- missing cx lookup -- |2 Crossref |u Seow LSE, Chua BY, Xie H, Wang J, Ong HL, Abdin E, et al. Correct recognition and continuum belief of mental disorders in a nursing student population. BMC Psychiatry. 2017;17:289. |t BMC Psychiatry |v 17 |y 2017 |
999 | C | 5 | |a 10.1017/S0033291708003814 |9 -- missing cx lookup -- |1 J Van Os |p 179 - |2 Crossref |u Van Os J, Linscott RJ, Delespaul P, Krabbendam L. A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness – persistence – impairment model of psychotic disorder. Psychol Med. 2009;39:179–95. |t Psychol Med |v 39 |y 2009 |
999 | C | 5 | |a 10.1016/S0272-7358(01)00103-9 |9 -- missing cx lookup -- |1 LC Johns |p 1125 - |2 Crossref |u Johns LC, van Os J. The continuity of psychotic experiences in the general population. Clin Psychol Rev. 2001;21:1125–41. |t Clin Psychol Rev |v 21 |y 2001 |
999 | C | 5 | |a 10.1001/jamapsychiatry.2021.0228 |9 -- missing cx lookup -- |2 Crossref |u Schultebraucks K, Choi KW, Galatzer-Levy IR, Bonanno GA. Discriminating heterogeneous trajectories of resilience and depression after major life stressors using polygenic scores. JAMA Psychiatry. 2021. https://doi.org/10.1001/jamapsychiatry.2021.0228. |
999 | C | 5 | |a 10.1016/j.psychres.2018.12.169 |9 -- missing cx lookup -- |1 CC Chan |p 655 - |2 Crossref |u Chan CC, Shanahan M, Ospina LH, Larsen EM, Burdick KE. Premorbid adjustment trajectories in schizophrenia and bipolar disorder: a transdiagnostic cluster analysis. Psychiatry Res. 2019;272:655–62. |t Psychiatry Res |v 272 |y 2019 |
999 | C | 5 | |1 LA Maglanoc |y 2019 |2 Crossref |u Maglanoc LA, Landrø NI, Jonassen R, Kaufmann T, Córdova-palomera A, Hilland E, et al. Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:16–26. |
999 | C | 5 | |a 10.1542/peds.2011-1601 |9 -- missing cx lookup -- |1 C Fountain |p e1112 LP - |2 Crossref |u Fountain C, Winter AS, Bearman PS. Six developmental trajectories characterize children with autism. Pediatrics 2012;129:e1112 LP–e1120. |t Pediatrics |v 129 |y 2012 |
999 | C | 5 | |a 10.1093/schbul/sbr125 |9 -- missing cx lookup -- |1 MD Bell |p 186 - |2 Crossref |u Bell MD, Corbera S, Johannesen JK, Fiszdon JM, Wexler BE. Social cognitive impairments and negative symptoms in schizophrenia: are there subtypes with distinct functional correlates? Schizophr Bull. 2011;39:186–96. |t Schizophr Bull |v 39 |y 2011 |
999 | C | 5 | |a 10.1016/j.schres.2020.03.011 |9 -- missing cx lookup -- |2 Crossref |u Stein F, Lemmer G, Schmitt S, Brosch K, Meller T, Fischer E, et al. Factor analyses of multidimensional symptoms in a large group of patients with major depressive disorder, bipolar disorder, schizoaffective disorder and schizophrenia. Schizophr Res. 2020;218:38–47. |
999 | C | 5 | |a 10.1038/nm.4246 |9 -- missing cx lookup -- |1 AT Drysdale |p 28 - |2 Crossref |u Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38. |t Nat Med |v 23 |y 2017 |
999 | C | 5 | |a 10.1371/journal.pone.0112307 |9 -- missing cx lookup -- |1 Y Cheng |p e112307 - |2 Crossref |u Cheng Y, Xu J, Yu H, Nie B, Li N, Luo C, et al. Delineation of early and later adult onset depression by diffusion tensor imaging. PLoS ONE. 2014;9:e112307–e112307. |t PLoS ONE |v 9 |y 2014 |
999 | C | 5 | |a 10.1016/j.nicl.2014.09.009 |9 -- missing cx lookup -- |1 IC Gould |p 229 - |2 Crossref |u Gould IC, Shepherd AM, Laurens KR, Cairns MJ, Carr VJ, Green MJ. Multivariate neuroanatomical classification of cognitive subtypes in schizophrenia: a support vector machine learning approach. NeuroImage Clin. 2014;6:229–36. |t NeuroImage Clin |v 6 |y 2014 |
999 | C | 5 | |a 10.1016/j.biopsych.2019.09.005 |9 -- missing cx lookup -- |1 AN Kaczkurkin |p 473 - |2 Crossref |u Kaczkurkin AN, Sotiras A, Baller EB, Barzilay R, Calkins ME, Chand GB, et al. Neurostructural heterogeneity in youths with internalizing symptoms. Biol Psychiatry. 2020;87:473–82. |t Biol Psychiatry |v 87 |y 2020 |
999 | C | 5 | |a 10.1016/j.dcn.2014.12.005 |9 -- missing cx lookup -- |1 TG Costa Dias |p 155 - |2 Crossref |u Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH, et al. Characterizing heterogeneity in children with and without ADHD based on reward system connectivity. Dev Cogn Neurosci. 2015;11:155–74. |t Dev Cogn Neurosci |v 11 |y 2015 |
999 | C | 5 | |a 10.1001/jamapsychiatry.2015.0505 |9 -- missing cx lookup -- |1 H Sun |p 678 - |2 Crossref |u Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry. 2015;72:678–86. |t JAMA Psychiatry |v 72 |y 2015 |
999 | C | 5 | |a 10.1038/s41398-018-0241-4 |1 E Haroon |9 -- missing cx lookup -- |2 Crossref |u Haroon E, Chen X, Li Z, Patel T, Woolwine BJ, Hu XP, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry. 2018;8:189. |t Transl Psychiatry |v 8 |y 2018 |
999 | C | 5 | |a 10.1038/tp.2017.102 |1 C Yu |9 -- missing cx lookup -- |2 Crossref |u Yu C, Arcos-Burgos M, Licinio J, Wong M-L. A latent genetic subtype of major depression identified by whole-exome genotyping data in a Mexican-American cohort. Transl Psychiatry. 2017;7:e1134. |t Transl Psychiatry |v 7 |y 2017 |
999 | C | 5 | |a 10.1038/s41398-020-0848-0 |1 DM Howard |9 -- missing cx lookup -- |2 Crossref |u Howard DM, Folkersen L, Coleman JRI, Adams MJ, Glanville K, Werge T, et al. Genetic stratification of depression in UK Biobank. Transl Psychiatry. 2020;10:163. |t Transl Psychiatry |v 10 |y 2020 |
999 | C | 5 | |a 10.1016/j.biopsych.2016.06.027 |9 -- missing cx lookup -- |1 NT Van Dam |p 484 - |2 Crossref |u Van Dam NT, Connor DO, Marcelle ET, Ho EJ, Craddock RC, Tobe RH, et al. Archival report data-driven phenotypic categorization for neurobiological analyses: beyond DSM-5 labels. Biol Psychiatry. 2017;81:484–94. |t Biol Psychiatry |v 81 |y 2017 |
999 | C | 5 | |a 10.1038/s41598-018-32521-z |1 T Tokuda |9 -- missing cx lookup -- |2 Crossref |u Tokuda T, Yoshimoto J, Shimizu Y, Okada G, Takamura M, Okamoto Y, et al. Identification of depression subtypes and relevant brain regions using a data-driven approach. Sci Rep. 2018;8:14082. |t Sci Rep |v 8 |y 2018 |
999 | C | 5 | |a 10.1038/s41380-019-0385-5 |9 -- missing cx lookup -- |1 L Beijers |p 888 - |2 Crossref |u Beijers L, Wardenaar KJ, van Loo HM, Schoevers RA. Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping. Mol Psychiatry. 2019;24:888–900. |t Mol Psychiatry |v 24 |y 2019 |
999 | C | 5 | |a 10.1016/j.pscychresns.2015.08.008 |9 -- missing cx lookup -- |1 D Geisler |p 74 - |2 Crossref |u Geisler D, Walton E, Naylor M, Roessner V, Lim KO, Charles Schulz S, et al. Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Res. 2015;234:74–83. |t Psychiatry Res |v 234 |y 2015 |
999 | C | 5 | |a 10.1093/schbul/sby008 |9 -- missing cx lookup -- |1 DB Dwyer |p 1060 - |2 Crossref |u Dwyer DB, Cabral C, Kambeitz-Ilankovic L, Sanfelici R, Kambeitz J, Calhoun V, et al. Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia. Schizophr Bull. 2018;44:1060–9. |t Schizophr Bull |v 44 |y 2018 |
999 | C | 5 | |a 10.1093/schbul/sbx039 |9 -- missing cx lookup -- |1 D Dickinson |p 101 - |2 Crossref |u Dickinson D, Pratt DN, Giangrande EJ, Grunnagle M, Orel J, Weinberger DR, et al. Attacking heterogeneity in schizophrenia by deriving clinical subgroups from widely available symptom data. Schizophr Bull. 2017;44:101–13. |t Schizophr Bull |v 44 |y 2017 |
999 | C | 5 | |a 10.1177/070674370304801010 |9 -- missing cx lookup -- |1 E Helmes |p 702 - |2 Crossref |u Helmes E, Landmark J. Subtypes of schizophrenia: a cluster analytic approach. Can J Psychiatry. 2003;48:702–8. |t Can J Psychiatry |v 48 |y 2003 |
999 | C | 5 | |a 10.1016/j.nicl.2013.11.002 |9 -- missing cx lookup -- |1 KH Brodersen |p 98 - |2 Crossref |u Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, et al. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014;4:98–111. |t NeuroImage Clin |v 4 |y 2014 |
999 | C | 5 | |a 10.1016/0165-1781(83)90132-4 |9 -- missing cx lookup -- |1 AE Farmer |p 1 - |2 Crossref |u Farmer AE, McGuffin P, Spitznagel EL. Heterogeneity in schizophrenia: a cluster-analytic approach. Psychiatry Res. 1983;8:1–12. |t Psychiatry Res |v 8 |y 1983 |
999 | C | 5 | |a 10.1016/j.jad.2016.11.030 |9 -- missing cx lookup -- |1 J Lee |p 71 - |2 Crossref |u Lee J, Rizzo S, Altshuler L, Glahn DC, Miklowitz DJ, Sugar CA, et al. Deconstructing bipolar disorder and schizophrenia: a cross-diagnostic cluster analysis of cognitive phenotypes. J Affect Disord. 2017;209:71–79. |t J Affect Disord |v 209 |y 2017 |
999 | C | 5 | |a 10.1016/j.jad.2019.08.049 |9 -- missing cx lookup -- |1 EA Carbone |p 104 - |2 Crossref |u Carbone EA, Pugliese V, Bruni A, Aloi M, Calabrò G, Jaén-moreno MJ, et al. Adverse childhood experiences and clinical severity in bipolar disorder and schizophrenia: a transdiagnostic two-step cluster analysis. J Affect Disord. 2019;259:104–11. |t J Affect Disord |v 259 |y 2019 |
999 | C | 5 | |a 10.1177/0004867414557957 |9 -- missing cx lookup -- |1 A Kleinman |p 255 - |2 Crossref |u Kleinman A, Caetano SC, Brentani H, Rocca CC, de A, dos Santos B, et al. Attention-based classification pattern, a research domain criteria framework, in youths with bipolar disorder and attention-deficit/hyperactivity disorder. Aust N. Zeal J Psychiatry. 2014;49:255–65. |t Aust N. Zeal J Psychiatry |v 49 |y 2014 |
999 | C | 5 | |a 10.1001/jamapsychiatry.2019.4910 |9 -- missing cx lookup -- |1 DB Dwyer |p 523 - |2 Crossref |u Dwyer DB, Kalman JL, Budde M, Kambeitz J, Ruef A, Antonucci LA, et al. An investigation of psychosis subgroups with prognostic validation and exploration of genetic underpinnings: the PsyCourse study. JAMA Psychiatry. 2020;77:523–33. |t JAMA Psychiatry |v 77 |y 2020 |
999 | C | 5 | |a 10.1016/j.comppsych.2017.06.009 |9 -- missing cx lookup -- |2 Crossref |u Forbush K, Hagan K, Kite B, Chapa D, Bohrer B, Gould S. Understanding eating disorders within internalizing psychopathology: a novel transdiagnostic, hierarchical-dimensional model. Compr Psychiatry. 2017;79:40–52. |
999 | C | 5 | |a 10.1001/jamapsychiatry.2017.3951 |9 -- missing cx lookup -- |1 KA Grisanzio |p 201 - |2 Crossref |u Grisanzio KA, Goldstein-Piekarski AN, Wang MY, Rashed Ahmed AP, Samara Z, Williams LM. Transdiagnostic symptom clusters and associations with brain, behavior, and daily function in mood, anxiety, and trauma disorders. JAMA Psychiatry. 2018;75:201–9. |t JAMA Psychiatry |v 75 |y 2018 |
999 | C | 5 | |a 10.1017/S0033291714000774 |9 -- missing cx lookup -- |1 KE Lewandowski |p 3239 - |2 Crossref |u Lewandowski KE, Sperry SH, Cohen BM, Ongür D. Cognitive variability in psychotic disorders: a cross-diagnostic cluster analysis. Psychol Med. 2014;44:3239–48. |t Psychol Med |v 44 |y 2014 |
999 | C | 5 | |a 10.1002/wps.20512 |9 -- missing cx lookup -- |1 M Maj |p 121 - |2 Crossref |u Maj M. Why the clinical utility of diagnostic categories in psychiatry is intrinsically limited and how we can use new approaches to complement them. World Psychiatry. 2018;17:121. |t World Psychiatry |v 17 |y 2018 |
999 | C | 5 | |a 10.1002/wps.20631 |9 -- missing cx lookup -- |1 P Fusar-Poli |p 192 - |2 Crossref |u Fusar-Poli P, Solmi M, Brondino N, Davies C, Chae C, Politi P, et al. Transdiagnostic psychiatry: a systematic review. World Psychiatry. 2019;18:192–207. |t World Psychiatry |v 18 |y 2019 |
999 | C | 5 | |a 10.1016/j.csda.2007.02.009 |9 -- missing cx lookup -- |1 C Bouveyron |p 502 - |2 Crossref |u Bouveyron C, Girard S, Schmid C. High-dimensional data clustering. Comput Stat Data Anal. 2007;52:502–19. |t Comput Stat Data Anal |v 52 |y 2007 |
999 | C | 5 | |a 10.1007/s00406-018-0943-x |9 -- missing cx lookup -- |1 T Kircher |p 949 - |2 Crossref |u Kircher T, Wöhr M, Nenadic I, Schwarting R, Schratt G, Alferink J, et al. Neurobiology of the major psychoses: a translational perspective on brain structure and function—the FOR2107 consortium. Eur Arch Psychiatry Clin Neurosci. 2019;269:949–62. |t Eur Arch Psychiatry Clin Neurosci |v 269 |y 2019 |
999 | C | 5 | |2 Crossref |u Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M. SKID I. Strukturiertes Klinisches Interview für DSM-IV. Achse I: Psychische Störungen. Interviewheft und Beurteilungsheft. Eine deutschsprachige, erweiterte Bearb. d. amerikanischen Originalversion des SKID I. 1997. |
999 | C | 5 | |a 10.1016/j.schres.2019.04.018 |9 -- missing cx lookup -- |2 Crossref |u Meller T, Schmitt S, Stein F, Brosch K, Mosebach J, Yüksel D, et al. Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophr Res. 2019;208:67–75. |
999 | C | 5 | |a 10.1126/sciadv.1501678 |9 -- missing cx lookup -- |1 TFM Andlauer |p e1501678 - |2 Crossref |u Andlauer TFM, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv. 2016;2:e1501678–e1501678. |t Sci Adv |v 2 |y 2016 |
999 | C | 5 | |a 10.1038/s41467-019-09718-5 |1 T Ge |9 -- missing cx lookup -- |2 Crossref |u Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776. |t Nat Commun |v 10 |y 2019 |
999 | C | 5 | |a 10.1038/s41588-018-0269-7 |9 -- missing cx lookup -- |1 D Demontis |p 63 - |2 Crossref |u Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75. |t Nat Genet |v 51 |y 2019 |
999 | C | 5 | |a 10.1038/s41588-019-0344-8 |9 -- missing cx lookup -- |1 J Grove |p 431 - |2 Crossref |u Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44. |t Nat Genet |v 51 |y 2019 |
999 | C | 5 | |a 10.1038/s41588-019-0397-8 |9 -- missing cx lookup -- |1 EA Stahl |p 793 - |2 Crossref |u Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803. |t Nat Genet |v 51 |y 2019 |
999 | C | 5 | |a 10.1016/j.cell.2019.11.020 |9 -- missing cx lookup -- |1 P Lee |p 1469 - |2 Crossref |u Lee P, Anttila V, Won H, Feng Y-C, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 2019;179:1469–82. |t Cell |v 179 |y 2019 |
999 | C | 5 | |a 10.1038/nature17671 |9 -- missing cx lookup -- |1 A Okbay |p 539 - |2 Crossref |u Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 2016;533:539–42. |t Nature |v 533 |y 2016 |
999 | C | 5 | |a 10.1007/s10519-015-9735-5 |9 -- missing cx lookup -- |1 SM van den Berg |p 170 - |2 Crossref |u van den Berg SM, de Moor MHM, Verweij KJH, Krueger RF, Luciano M, Arias Vasquez A, et al. Meta-analysis of genome-wide association studies for extraversion: findings from the genetics of personality consortium. Behav Genet. 2016;46:170–82. |t Behav Genet |v 46 |y 2016 |
999 | C | 5 | |a 10.1038/s41598-018-32638-1 |1 BML Baselmans |9 -- missing cx lookup -- |2 Crossref |u Baselmans BML, Bartels M. A genetic perspective on the relationship between eudaimonic -and hedonic well-being. Sci Rep. 2018;8:14610. |t Sci Rep |v 8 |y 2018 |
999 | C | 5 | |a 10.1038/s41593-018-0326-7 |9 -- missing cx lookup -- |1 DM Howard |p 343 - |2 Crossref |u Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52. |t Nat Neurosci |v 22 |y 2019 |
999 | C | 5 | |a 10.1038/s41588-017-0013-8 |9 -- missing cx lookup -- |1 M Luciano |p 6 - |2 Crossref |u Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke T-K, Shirali M, et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet. 2018;50:6–11. |t Nat Genet |v 50 |y 2018 |
999 | C | 5 | |a 10.1038/s41588-018-0059-2 |9 -- missing cx lookup -- |1 AF Pardiñas |p 381 - |2 Crossref |u Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9. |t Nat Genet |v 50 |y 2018 |
999 | C | 5 | |a 10.18637/jss.v046.i06 |9 -- missing cx lookup -- |2 Crossref |u Berg L, Bouveyron C, Girard S. HDclassif: An R package for model-based clustering and discriminant analysis of high-dimensional data. J Stat Softw. 2012;46:i11. |
999 | C | 5 | |1 R Rifkin |y 2004 |2 Crossref |u Rifkin R, Klautau A. In defense of one-vs-all classification. J Mach Learn Res. 2004;5:101–41. |
999 | C | 5 | |a 10.1080/03610920701271095 |9 -- missing cx lookup -- |1 C Bouveyron |p 2607 - |2 Crossref |u Bouveyron C, Girard S, Schmid C. High-dimensional discriminant analysis. Commun Stat - Theory Methods. 2007;36:2607–23. |t Commun Stat - Theory Methods |v 36 |y 2007 |
999 | C | 5 | |1 R Tibshirani |y 1996 |2 Crossref |u Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc (Ser B). 1996;58:267–88. |
999 | C | 5 | |2 Crossref |u Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for p-value adjustment. (Wiley, 1993). |
999 | C | 5 | |a 10.1001/jamapsychiatry.2014.1100 |9 -- missing cx lookup -- |1 R Redlich |p 1222 - |2 Crossref |u Redlich R, Almeida JR, Grotegerd D, Opel N, Kugel H, Heindel W, et al. Brain morphometric biomarkers distinguishing unipolar and bipolar depression: a voxel-based morphometry–pattern classification approach. JAMA Psychiatry. 2014;71:1222–30. |t JAMA Psychiatry |v 71 |y 2014 |
999 | C | 5 | |a 10.1080/10618600.2014.948179 |9 -- missing cx lookup -- |1 H Huang |p 975 - |2 Crossref |u Huang H, Liu Y, Yuan M, Marron JS. Statistical significance of clustering using soft thresholding. J Comput Graph Stat. 2015;24:975–93. |t J Comput Graph Stat |v 24 |y 2015 |
999 | C | 5 | |a 10.1016/j.biopsych.2019.10.015 |9 -- missing cx lookup -- |2 Crossref |u Coleman JRI, Gaspar HA, Bryois JConsortium; BDWG of the PG, Consortium MDDWG of the PG, Breen G. The genetics of the mood disorder spectrum: genome-wide association analyses of over 185,000 cases and 439,000 controls. Biol Psychiatry. 2020;88:169–184. |
999 | C | 5 | |a 10.1101/2020.05.18.20100685 |9 -- missing cx lookup -- |2 Crossref |u Levey DF, Stein MB, Wendt FR, Pathak GA, Zhou H, Aslan M, et al. GWAS of depression phenotypes in the million veteran program and meta-analysis in more than 1.2 million participants yields 178 independent risk loci. MedRxiv. 2020; https://doi.org/10.1101/2020.05.18.20100685. |
999 | C | 5 | |a 10.1038/s41467-018-05510-z |1 V Bansal |9 -- missing cx lookup -- |2 Crossref |u Bansal V, Mitjans M, Burik CAP, Linnér RK, Okbay A, Rietveld CA, et al. Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nat Commun. 2018;9:3078. |t Nat Commun |v 9 |y 2018 |
999 | C | 5 | |a 10.1192/bjp.bp.112.117432 |9 -- missing cx lookup -- |1 ML Hamshere |p 107 - |2 Crossref |u Hamshere ML, Stergiakouli E, Langley K, Martin J, Holmans P, Kent L, et al. Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. Br J Psychiatry. 2013;203:107–11. |t Br J Psychiatry |v 203 |y 2013 |
999 | C | 5 | |a 10.1016/j.eurpsy.2013.06.004 |9 -- missing cx lookup -- |1 S Dalsgaard |p 259 - |2 Crossref |u Dalsgaard S, Mortensen PB, Frydenberg M, Maibing CM, Nordentoft M, Thomsen PH. Association between Attention-Deficit Hyperactivity Disorder in childhood and schizophrenia later in adulthood. Eur Psychiatry. 2014;29:259–63. |t Eur Psychiatry |v 29 |y 2014 |
999 | C | 5 | |a 10.1159/000232975 |9 -- missing cx lookup -- |1 IA Rubino |p 325 - |2 Crossref |u Rubino IA, Frank E, Croce Nanni R, Pozzi D, Lanza di Scalea T, Siracusano A. A comparative study of axis i antecedents before age 18 of unipolar depression, bipolar disorder and schizophrenia. Psychopathology 2009;42:325–32. |t Psychopathology |v 42 |y 2009 |
999 | C | 5 | |a 10.1002/wps.20087 |9 -- missing cx lookup -- |1 BN Cuthbert |p 28 - |2 Crossref |u Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry. 2014;13:28–35. |t World Psychiatry |v 13 |y 2014 |
999 | C | 5 | |a 10.1016/j.tics.2020.01.007 |9 -- missing cx lookup -- |1 J Dang |p 267 - |2 Crossref |u Dang J, King KM, Inzlicht M. Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci. 2020;24:267–9. |t Trends Cogn Sci |v 24 |y 2020 |
999 | C | 5 | |a 10.3758/s13428-017-0935-1 |9 -- missing cx lookup -- |1 C Hedge |p 1166 - |2 Crossref |u Hedge C, Powell G, Sumner P. The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods. 2018;50:1166–86. |t Behav Res Methods |v 50 |y 2018 |
999 | C | 5 | |a 10.1101/2021.04.15.439975 |9 -- missing cx lookup -- |2 Crossref |u Hujoel MLA, Loh P-R, Neale B, Price AL. Incorporating family history of disease improves polygenic risk scores in diverse populations. BioRxiv. 2021; https://www.biorxiv.org/content/10.1101/2021.04.15.439975v1. |
999 | C | 5 | |a 10.1038/s41588-018-0090-3 |9 -- missing cx lookup -- |1 NR Wray |p 668 - |2 Crossref |u Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81. |t Nat Genet |v 50 |y 2018 |
999 | C | 5 | |a 10.1001/jamapsychiatry.2020.3042 |9 -- missing cx lookup -- |1 GK Murray |p 210 - |2 Crossref |u Murray GK, Lin T, Austin J, McGrath JJ, Hickie IB, Wray NR. Could polygenic risk scores be useful in psychiatry?: a review. JAMA Psychiatry. 2021;78:210–9. |t JAMA Psychiatry |v 78 |y 2021 |
999 | C | 5 | |a 10.1093/schbul/sbs050 |9 -- missing cx lookup -- |1 F Varese |p 661 - |2 Crossref |u Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, et al. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull. 2012;38:661–71. |t Schizophr Bull |v 38 |y 2012 |
999 | C | 5 | |a 10.1016/j.neubiorev.2017.02.015 |9 -- missing cx lookup -- |1 B Misiak |p 393 - |2 Crossref |u Misiak B, Krefft M, Bielawski T, Moustafa AA, Sąsiadek MM, Frydecka D. Toward a unified theory of childhood trauma and psychosis: a comprehensive review of epidemiological, clinical, neuropsychological and biological findings. Neurosci Biobehav Rev. 2017;75:393–406. |t Neurosci Biobehav Rev |v 75 |y 2017 |
999 | C | 5 | |a 10.1016/j.psychres.2015.06.001 |9 -- missing cx lookup -- |2 Crossref |u Li X-B, Li Q-Y, Liu J-T, Zhang L, Tang Y-L, Wang C-Y. Childhood trauma associates with clinical features of schizophrenia in a sample of Chinese inpatients. Psychiatry Res. 2015;228:702–7. |
999 | C | 5 | |a 10.1046/j.0001-690X.2003.00217.x |9 -- missing cx lookup -- |1 I Janssen |p 38 - |2 Crossref |u Janssen I, Krabbendam L, Bak M, Hanssen M, Vollebergh W, Graaf R, et al. Childhood abuse as a risk factor for psychotic experiences. Acta Psychiatr Scand. 2004;109:38–45. |t Acta Psychiatr Scand |v 109 |y 2004 |
999 | C | 5 | |2 Crossref |u Shah SA, Koltun V. Deep continuous clustering. 2018; https://arxiv.org/abs/1803.01449. |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|