000903486 001__ 903486
000903486 005__ 20240627202007.0
000903486 0247_ $$2doi$$a10.1038/s41467-021-25429-2
000903486 0247_ $$2Handle$$a2128/30804
000903486 0247_ $$2altmetric$$aaltmetric:112459919
000903486 0247_ $$2pmid$$apmid:34453062
000903486 0247_ $$2WOS$$aWOS:000691020900009
000903486 037__ $$aFZJ-2021-05158
000903486 082__ $$a500
000903486 1001_ $$0P:(DE-HGF)0$$aParker, AV$$b0
000903486 245__ $$aThe structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding
000903486 260__ $$a[London]$$bNature Publishing Group UK$$c2021
000903486 3367_ $$2DRIVER$$aarticle
000903486 3367_ $$2DataCite$$aOutput Types/Journal article
000903486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719493045_19429
000903486 3367_ $$2BibTeX$$aARTICLE
000903486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903486 3367_ $$00$$2EndNote$$aJournal Article
000903486 520__ $$aThe efficient segregation of replicated genetic material is an essential step for cell division.Bacterial cells use several evolutionarily-distinct genome segregation systems, the mostcommon of which is the type I Par system. It consists of an adapter protein, ParB, that bindsto the DNA cargo via interaction with the parS DNA sequence; and an ATPase, ParA, thatbinds nonspecific DNA and mediates cargo transport. However, the molecular details of howthis system functions are not well understood. Here, we report the cryo-EM structure of theVibrio cholerae ParA2 filament bound to DNA, as well as the crystal structures of this proteinin various nucleotide states. These structures show that ParA forms a left-handed filament onDNA, stabilized by nucleotide binding, and that ParA undergoes profound structural rear-rangements upon DNA binding and filament assembly. Collectively, our data suggest thestructural basis for ParA’s cooperative binding to DNA and the formation of high ParA densityregions on the nucleoid.
000903486 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000903486 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000903486 7001_ $$0P:(DE-Juel1)179550$$aMann, Daniel$$b1
000903486 7001_ $$0P:(DE-HGF)0$$aTzokov, SB$$b2
000903486 7001_ $$0P:(DE-HGF)0$$aHwang, LC$$b3
000903486 7001_ $$0P:(DE-HGF)0$$aBergeron, C.$$b4$$eCorresponding author
000903486 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-021-25429-2$$p5166$$tNature Communications$$v12$$x2041-1723$$y2021
000903486 8564_ $$uhttps://juser.fz-juelich.de/record/903486/files/s41467-021-25429-2.pdf$$yOpenAccess
000903486 909CO $$ooai:juser.fz-juelich.de:903486$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179550$$aForschungszentrum Jülich$$b1$$kFZJ
000903486 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000903486 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000903486 9141_ $$y2022
000903486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903486 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000903486 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903486 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000903486 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000903486 920__ $$lyes
000903486 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000903486 980__ $$ajournal
000903486 980__ $$aVDB
000903486 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000903486 980__ $$aUNRESTRICTED
000903486 9801_ $$aFullTexts