000903490 001__ 903490
000903490 005__ 20240712084556.0
000903490 0247_ $$2doi$$a10.1007/s10596-018-9793-x
000903490 0247_ $$2ISSN$$a1420-0597
000903490 0247_ $$2ISSN$$a1573-1499
000903490 0247_ $$2Handle$$a2128/29526
000903490 0247_ $$2altmetric$$aaltmetric:51448339
000903490 0247_ $$2WOS$$aWOS:000678376200004
000903490 037__ $$aFZJ-2021-05162
000903490 041__ $$aEnglish
000903490 082__ $$a550
000903490 1001_ $$0P:(DE-Juel1)169154$$aPoonoosamy, J.$$b0$$eCorresponding author
000903490 245__ $$aBenchmarking of reactive transport codes for 2D simulations with mineral dissolution–precipitation reactions and feedback on transport parameters
000903490 260__ $$aBussum$$bBaltzer Science Publ.$$c2021
000903490 3367_ $$2DRIVER$$aarticle
000903490 3367_ $$2DataCite$$aOutput Types/Journal article
000903490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639990159_12690
000903490 3367_ $$2BibTeX$$aARTICLE
000903490 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903490 3367_ $$00$$2EndNote$$aJournal Article
000903490 520__ $$aPorosity changes due to mineral dissolution–precipitation reactions in porous media and the resulting impact on transport parameters influence the evolution of natural geological environments or engineered underground barrier systems. In the absence of long-term experimental studies, reactive transport codes are used to evaluate the long-term evolution of engineered barrier systems and waste disposal in the deep underground. Examples for such problems are the long-term fate of CO2 in saline aquifers and mineral transformations that cause porosity changes at clay–concrete interfaces. For porosity clogging under a diffusive transport regime and for simple reaction networks, the accuracy of numerical codes can be verified against analytical solutions. For clogging problems with more complex chemical interactions and transport processes, numerical benchmarks are more suitable to assess model performance, the influence of thermodynamic data, and sensitivity to the reacting mineral phases. Such studies increase confidence in numerical model descriptions of more complex, engineered barrier systems. We propose a reactive transport benchmark, considering the advective–diffusive transport of solutes; the effect of liquid-phase density on liquid flow and advective transport; kinetically controlled dissolution–precipitation reactions causing porosity, permeability, and diffusivity changes; and the formation of a solid solution. We present and analyze the results of five participating reactive transport codes (i.e., CORE2D, MIN3P-THCm, OpenGeoSys-GEM, PFLOTRAN, and TOUGHREACT). In all cases, good agreement of the results was obtained.
000903490 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000903490 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903490 7001_ $$0P:(DE-HGF)0$$aWanner, C.$$b1
000903490 7001_ $$0P:(DE-HGF)0$$aAlt Epping, P.$$b2
000903490 7001_ $$0P:(DE-HGF)0$$aÁguila, J. F.$$b3
000903490 7001_ $$0P:(DE-HGF)0$$aSamper, J.$$b4
000903490 7001_ $$0P:(DE-HGF)0$$aMontenegro, L.$$b5
000903490 7001_ $$0P:(DE-HGF)0$$aXie, M.$$b6
000903490 7001_ $$0P:(DE-HGF)0$$aSu, D.$$b7
000903490 7001_ $$0P:(DE-HGF)0$$aMayer, K. U.$$b8
000903490 7001_ $$0P:(DE-HGF)0$$aMäder, U.$$b9
000903490 7001_ $$0P:(DE-HGF)0$$aVan Loon, L. R.$$b10
000903490 7001_ $$0P:(DE-HGF)0$$aKosakowski, G.$$b11
000903490 773__ $$0PERI:(DE-600)2001545-8$$a10.1007/s10596-018-9793-x$$gVol. 25, no. 4, p. 1337 - 1358$$n4$$p1337 - 1358$$tComputational geosciences$$v25$$x1420-0597$$y2021
000903490 8564_ $$uhttps://juser.fz-juelich.de/record/903490/files/Poonoosamy2021_Article_BenchmarkingOfReactiveTranspor.pdf$$yRestricted
000903490 8564_ $$uhttps://juser.fz-juelich.de/record/903490/files/revised_Poonoosamy_SeSbenchmark_clean.pdf$$yPublished on 2018-11-19. Available in OpenAccess from 2019-11-19.
000903490 909CO $$ooai:juser.fz-juelich.de:903490$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169154$$aForschungszentrum Jülich$$b0$$kFZJ
000903490 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000903490 9141_ $$y2021
000903490 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903490 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUTAT GEOSCI : 2019$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger
000903490 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903490 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000903490 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903490 920__ $$lyes
000903490 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000903490 9801_ $$aFullTexts
000903490 980__ $$ajournal
000903490 980__ $$aVDB
000903490 980__ $$aUNRESTRICTED
000903490 980__ $$aI:(DE-Juel1)IEK-6-20101013
000903490 981__ $$aI:(DE-Juel1)IFN-2-20101013