001     903490
005     20240712084556.0
024 7 _ |a 10.1007/s10596-018-9793-x
|2 doi
024 7 _ |a 1420-0597
|2 ISSN
024 7 _ |a 1573-1499
|2 ISSN
024 7 _ |a 2128/29526
|2 Handle
024 7 _ |a altmetric:51448339
|2 altmetric
024 7 _ |a WOS:000678376200004
|2 WOS
037 _ _ |a FZJ-2021-05162
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Poonoosamy, J.
|0 P:(DE-Juel1)169154
|b 0
|e Corresponding author
245 _ _ |a Benchmarking of reactive transport codes for 2D simulations with mineral dissolution–precipitation reactions and feedback on transport parameters
260 _ _ |a Bussum
|c 2021
|b Baltzer Science Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639990159_12690
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Porosity changes due to mineral dissolution–precipitation reactions in porous media and the resulting impact on transport parameters influence the evolution of natural geological environments or engineered underground barrier systems. In the absence of long-term experimental studies, reactive transport codes are used to evaluate the long-term evolution of engineered barrier systems and waste disposal in the deep underground. Examples for such problems are the long-term fate of CO2 in saline aquifers and mineral transformations that cause porosity changes at clay–concrete interfaces. For porosity clogging under a diffusive transport regime and for simple reaction networks, the accuracy of numerical codes can be verified against analytical solutions. For clogging problems with more complex chemical interactions and transport processes, numerical benchmarks are more suitable to assess model performance, the influence of thermodynamic data, and sensitivity to the reacting mineral phases. Such studies increase confidence in numerical model descriptions of more complex, engineered barrier systems. We propose a reactive transport benchmark, considering the advective–diffusive transport of solutes; the effect of liquid-phase density on liquid flow and advective transport; kinetically controlled dissolution–precipitation reactions causing porosity, permeability, and diffusivity changes; and the formation of a solid solution. We present and analyze the results of five participating reactive transport codes (i.e., CORE2D, MIN3P-THCm, OpenGeoSys-GEM, PFLOTRAN, and TOUGHREACT). In all cases, good agreement of the results was obtained.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wanner, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alt Epping, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Águila, J. F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Samper, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Montenegro, L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Xie, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Su, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mayer, K. U.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mäder, U.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Van Loon, L. R.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kosakowski, G.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1007/s10596-018-9793-x
|g Vol. 25, no. 4, p. 1337 - 1358
|0 PERI:(DE-600)2001545-8
|n 4
|p 1337 - 1358
|t Computational geosciences
|v 25
|y 2021
|x 1420-0597
856 4 _ |u https://juser.fz-juelich.de/record/903490/files/Poonoosamy2021_Article_BenchmarkingOfReactiveTranspor.pdf
|y Restricted
856 4 _ |y Published on 2018-11-19. Available in OpenAccess from 2019-11-19.
|u https://juser.fz-juelich.de/record/903490/files/revised_Poonoosamy_SeSbenchmark_clean.pdf
909 C O |o oai:juser.fz-juelich.de:903490
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169154
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUTAT GEOSCI : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21