000009035 001__ 9035
000009035 005__ 20210129210454.0
000009035 0247_ $$2pmid$$apmid:19776344
000009035 0247_ $$2DOI$$a10.1093/cercor/bhp158
000009035 0247_ $$2WOS$$aWOS:000275566500018
000009035 037__ $$aPreJuSER-9035
000009035 041__ $$aeng
000009035 082__ $$a610
000009035 084__ $$2WoS$$aNeurosciences
000009035 1001_ $$0P:(DE-HGF)0$$aDe Sousa, A.A.$$b0
000009035 245__ $$aComparative Cytoarchitectural Analyses of Striate and Extrastriate Areas in Hominoids
000009035 260__ $$aOxford$$bOxford Univ. Press$$c2010
000009035 300__ $$a966 - 987
000009035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000009035 3367_ $$2DataCite$$aOutput Types/Journal article
000009035 3367_ $$00$$2EndNote$$aJournal Article
000009035 3367_ $$2BibTeX$$aARTICLE
000009035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000009035 3367_ $$2DRIVER$$aarticle
000009035 440_0 $$01171$$aCerebral Cortex$$v20$$x1047-3211$$y4
000009035 500__ $$aNational Science Foundation (9987590, 01-113); the James S. McDonnell Foundation (22002078).
000009035 520__ $$aThe visual cortex is the largest sensory modality representation in the neocortex of humans and closely related species, and its size and organization has a central role in discussions of brain evolution. Yet little is known about the organization of visual brain structures in the species closest to humans--the apes--thus, making it difficult to evaluate hypotheses about recent evolutionary changes. The primate visual cortex is comprised of numerous cytoarchitectonically distinct areas, each of which has a specific role in the processing of visual stimuli. We examined the histological organization of striate (V1) and 2 extrastriate (V2 and ventral posterior) cortical areas in humans, 5 ape species, and a macaque. The cytoarchitectural patterns of visual areas were compared across species using quantitative descriptions of cell volume densities and laminar patterns. We also investigated potential scaling relationships between cell volume density and several brain, body, and visual system variables. The results suggest that interspecific variability in the cytoarchitectural organization of visual system structures can arise independently of global brain and body size scaling relationships. In particular, species-specific differences in cell volume density seem to be most closely linked to the size of structures in the visual system.
000009035 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000009035 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000009035 588__ $$aDataset connected to Web of Science, Pubmed
000009035 65320 $$2Author$$aallometry
000009035 65320 $$2Author$$aevolution
000009035 65320 $$2Author$$agray level index
000009035 65320 $$2Author$$ahominoids
000009035 65320 $$2Author$$avisual cortex
000009035 650_2 $$2MeSH$$aAnimals
000009035 650_2 $$2MeSH$$aBiological Evolution
000009035 650_2 $$2MeSH$$aBrain Mapping
000009035 650_2 $$2MeSH$$aCell Count
000009035 650_2 $$2MeSH$$aCell Size
000009035 650_2 $$2MeSH$$aHominidae: anatomy & histology
000009035 650_2 $$2MeSH$$aHominidae: classification
000009035 650_2 $$2MeSH$$aHumans
000009035 650_2 $$2MeSH$$aNeurons: physiology
000009035 650_2 $$2MeSH$$aSpecies Specificity
000009035 650_2 $$2MeSH$$aVisual Cortex: cytology
000009035 650_2 $$2MeSH$$aVisual Fields
000009035 650_2 $$2MeSH$$aVisual Pathways
000009035 650_7 $$2WoSType$$aJ
000009035 7001_ $$0P:(DE-HGF)0$$aSherwood, C.C.$$b1
000009035 7001_ $$0P:(DE-HGF)0$$aSchleicher, A.$$b2
000009035 7001_ $$0P:(DE-Juel1)131631$$aAmunts, K.$$b3$$uFZJ
000009035 7001_ $$0P:(DE-HGF)0$$aMacLeod, C.E.$$b4
000009035 7001_ $$0P:(DE-HGF)0$$aHof, P.R.$$b5
000009035 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b6$$uFZJ
000009035 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhp158$$gVol. 20, p. 966 - 987$$p966 - 987$$q20<966 - 987$$tCerebral cortex$$v20$$x1047-3211$$y2010
000009035 8567_ $$uhttp://dx.doi.org/10.1093/cercor/bhp158
000009035 909CO $$ooai:juser.fz-juelich.de:9035$$pVDB
000009035 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000009035 9141_ $$y2010
000009035 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000009035 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000009035 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000009035 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000009035 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000009035 970__ $$aVDB:(DE-Juel1)118414
000009035 980__ $$aVDB
000009035 980__ $$aConvertedRecord
000009035 980__ $$ajournal
000009035 980__ $$aI:(DE-Juel1)INM-2-20090406
000009035 980__ $$aI:(DE-Juel1)INM-1-20090406
000009035 980__ $$aI:(DE-82)080010_20140620
000009035 980__ $$aUNRESTRICTED
000009035 981__ $$aI:(DE-Juel1)INM-1-20090406
000009035 981__ $$aI:(DE-Juel1)VDB1046