| Home > Publications database > Comparative Cytoarchitectural Analyses of Striate and Extrastriate Areas in Hominoids > print |
| 001 | 9035 | ||
| 005 | 20210129210454.0 | ||
| 024 | 7 | _ | |2 pmid |a pmid:19776344 |
| 024 | 7 | _ | |2 DOI |a 10.1093/cercor/bhp158 |
| 024 | 7 | _ | |2 WOS |a WOS:000275566500018 |
| 037 | _ | _ | |a PreJuSER-9035 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 610 |
| 084 | _ | _ | |2 WoS |a Neurosciences |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a De Sousa, A.A. |b 0 |
| 245 | _ | _ | |a Comparative Cytoarchitectural Analyses of Striate and Extrastriate Areas in Hominoids |
| 260 | _ | _ | |a Oxford |b Oxford Univ. Press |c 2010 |
| 300 | _ | _ | |a 966 - 987 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 1171 |a Cerebral Cortex |v 20 |x 1047-3211 |y 4 |
| 500 | _ | _ | |a National Science Foundation (9987590, 01-113); the James S. McDonnell Foundation (22002078). |
| 520 | _ | _ | |a The visual cortex is the largest sensory modality representation in the neocortex of humans and closely related species, and its size and organization has a central role in discussions of brain evolution. Yet little is known about the organization of visual brain structures in the species closest to humans--the apes--thus, making it difficult to evaluate hypotheses about recent evolutionary changes. The primate visual cortex is comprised of numerous cytoarchitectonically distinct areas, each of which has a specific role in the processing of visual stimuli. We examined the histological organization of striate (V1) and 2 extrastriate (V2 and ventral posterior) cortical areas in humans, 5 ape species, and a macaque. The cytoarchitectural patterns of visual areas were compared across species using quantitative descriptions of cell volume densities and laminar patterns. We also investigated potential scaling relationships between cell volume density and several brain, body, and visual system variables. The results suggest that interspecific variability in the cytoarchitectural organization of visual system structures can arise independently of global brain and body size scaling relationships. In particular, species-specific differences in cell volume density seem to be most closely linked to the size of structures in the visual system. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK409 |2 G:(DE-HGF) |x 0 |c FUEK409 |a Funktion und Dysfunktion des Nervensystems (FUEK409) |
| 536 | _ | _ | |0 G:(DE-HGF)POF2-89571 |a 89571 - Connectivity and Activity (POF2-89571) |c POF2-89571 |f POF II T |x 1 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Animals |
| 650 | _ | 2 | |2 MeSH |a Biological Evolution |
| 650 | _ | 2 | |2 MeSH |a Brain Mapping |
| 650 | _ | 2 | |2 MeSH |a Cell Count |
| 650 | _ | 2 | |2 MeSH |a Cell Size |
| 650 | _ | 2 | |2 MeSH |a Hominidae: anatomy & histology |
| 650 | _ | 2 | |2 MeSH |a Hominidae: classification |
| 650 | _ | 2 | |2 MeSH |a Humans |
| 650 | _ | 2 | |2 MeSH |a Neurons: physiology |
| 650 | _ | 2 | |2 MeSH |a Species Specificity |
| 650 | _ | 2 | |2 MeSH |a Visual Cortex: cytology |
| 650 | _ | 2 | |2 MeSH |a Visual Fields |
| 650 | _ | 2 | |2 MeSH |a Visual Pathways |
| 650 | _ | 7 | |2 WoSType |a J |
| 653 | 2 | 0 | |2 Author |a allometry |
| 653 | 2 | 0 | |2 Author |a evolution |
| 653 | 2 | 0 | |2 Author |a gray level index |
| 653 | 2 | 0 | |2 Author |a hominoids |
| 653 | 2 | 0 | |2 Author |a visual cortex |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Sherwood, C.C. |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Schleicher, A. |b 2 |
| 700 | 1 | _ | |0 P:(DE-Juel1)131631 |a Amunts, K. |b 3 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a MacLeod, C.E. |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Hof, P.R. |b 5 |
| 700 | 1 | _ | |0 P:(DE-Juel1)131714 |a Zilles, K. |b 6 |u FZJ |
| 773 | _ | _ | |0 PERI:(DE-600)1483485-6 |a 10.1093/cercor/bhp158 |g Vol. 20, p. 966 - 987 |p 966 - 987 |q 20<966 - 987 |t Cerebral cortex |v 20 |x 1047-3211 |y 2010 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1093/cercor/bhp158 |
| 909 | C | O | |o oai:juser.fz-juelich.de:9035 |p VDB |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF2-89571 |a DE-HGF |v Connectivity and Activity |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm |
| 914 | 1 | _ | |y 2010 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |g INM |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |g INM |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l Jülich-Aachen Research Alliance - Translational Brain Medicine |g JARA |x 2 |
| 970 | _ | _ | |a VDB:(DE-Juel1)118414 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 980 | _ | _ | |a I:(DE-82)080010_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
| 981 | _ | _ | |a I:(DE-Juel1)VDB1046 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|