000903528 001__ 903528
000903528 005__ 20220923174127.0
000903528 0247_ $$2doi$$a10.1002/1873-3468.14140
000903528 0247_ $$2ISSN$$a0014-5793
000903528 0247_ $$2ISSN$$a1873-3468
000903528 0247_ $$2Handle$$a2128/31852
000903528 0247_ $$2pmid$$a34060653
000903528 0247_ $$2WOS$$aWOS:000663865600001
000903528 037__ $$aFZJ-2021-05196
000903528 041__ $$aEnglish
000903528 082__ $$a610
000903528 1001_ $$0P:(DE-HGF)0$$aSiebenaller, Carmen$$b0$$eCorresponding author
000903528 245__ $$aBinding and/or hydrolysis of purine‐based nucleotides is not required for IM30 ring formation
000903528 260__ $$aChichester$$bWiley$$c2021
000903528 3367_ $$2DRIVER$$aarticle
000903528 3367_ $$2DataCite$$aOutput Types/Journal article
000903528 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663252570_28411
000903528 3367_ $$2BibTeX$$aARTICLE
000903528 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903528 3367_ $$00$$2EndNote$$aJournal Article
000903528 520__ $$aIM30, the inner membrane-associated protein of 30 kDa, is conserved in cyanobacteria and chloroplasts. Although its exact physiological function is still mysterious, IM30 is clearly essential for thylakoid membrane biogenesis and/or dynamics. Recently, a cryptic IM30 GTPase activity has been reported, albeit thus far no physiological function has been attributed to this. Yet, it is still possible that GTP binding/hydrolysis affects formation of the prototypical large homo-oligomeric IM30 ring and rod structures. Here, we show that the Synechocystis sp. PCC 6803 IM30 protein in fact is an NTPase that hydrolyzes GTP and ATP, but not CTP or UTP, with about identical rates. While IM30 forms large oligomeric ring complexes, nucleotide binding and/or hydrolysis are clearly not required for ring formation.
000903528 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000903528 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903528 7001_ $$0P:(DE-HGF)0$$aSchlösser, Lukas$$b1
000903528 7001_ $$0P:(DE-Juel1)181012$$aJunglas, Benedikt$$b2
000903528 7001_ $$0P:(DE-HGF)0$$aSchmidt-Dengler, Martina$$b3
000903528 7001_ $$0P:(DE-HGF)0$$aJacob, Dominik$$b4
000903528 7001_ $$0P:(DE-HGF)0$$aHellmann, Nadja$$b5
000903528 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b6
000903528 7001_ $$0P:(DE-HGF)0$$aHelm, Mark$$b7
000903528 7001_ $$00000-0003-4517-6387$$aSchneider, Dirk$$b8
000903528 773__ $$0PERI:(DE-600)1460391-3$$a10.1002/1873-3468.14140$$gVol. 595, no. 14, p. 1876 - 1885$$n14$$p1876 - 1885$$tFEBS letters$$v595$$x0014-5793$$y2021
000903528 8564_ $$uhttps://juser.fz-juelich.de/record/903528/files/FEBS%20Letters%20-%202021%20-%20Siebenaller%20-%20Binding%20and%20or%20hydrolysis%20of%20purine%E2%80%90based%20nucleotides%20is%20not%20required%20for%20IM30%20ring.pdf$$yOpenAccess
000903528 909CO $$ooai:juser.fz-juelich.de:903528$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181012$$aForschungszentrum Jülich$$b2$$kFZJ
000903528 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b6$$kFZJ
000903528 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000903528 9141_ $$y2021
000903528 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000903528 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000903528 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFEBS LETT : 2019$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000903528 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903528 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903528 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903528 920__ $$lyes
000903528 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
000903528 980__ $$ajournal
000903528 980__ $$aVDB
000903528 980__ $$aUNRESTRICTED
000903528 980__ $$aI:(DE-Juel1)ER-C-3-20170113
000903528 9801_ $$aFullTexts