000903530 001__ 903530
000903530 005__ 20220103172043.0
000903530 0247_ $$2doi$$a10.1063/5.0069458
000903530 0247_ $$2ISSN$$a1070-6631
000903530 0247_ $$2ISSN$$a1089-7666
000903530 0247_ $$2ISSN$$a1527-2435
000903530 0247_ $$2Handle$$a2128/29449
000903530 0247_ $$2WOS$$aWOS:000731931700006
000903530 037__ $$aFZJ-2021-05198
000903530 082__ $$a530
000903530 1001_ $$0P:(DE-Juel1)188512$$aKorculanin, Olivera$$b0
000903530 245__ $$aAnomalous dynamic response of nematic platelets studied by spatially resolved rheo-small angle x-ray scattering in the 1–2 plane
000903530 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2021
000903530 3367_ $$2DRIVER$$aarticle
000903530 3367_ $$2DataCite$$aOutput Types/Journal article
000903530 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639406493_434
000903530 3367_ $$2BibTeX$$aARTICLE
000903530 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903530 3367_ $$00$$2EndNote$$aJournal Article
000903530 520__ $$aDispersions of colloidal platelets in the nematic phase display strong wall anchoring, which competes with the reorientational motion of the director when the system is subjected to flow. We show that the mechanical response to large amplitude oscillatory strain and stress depends on the confinement of the system due to this competition. We elucidate the underlying structural response by deflecting a x-ray beam vertically along the vorticity direction of a Couette geometry, such that the structure can be probed throughout the gap with an unprecedented spatial resolution while recording in situ the mechanical response. We observe strong inhomogeneities in terms of the orientation of the nematic director, depending on the extent of the system's yield during an oscillation. At small strain amplitudes, we observe a small region where the director oscillates between wall anchoring and the Leslie angle, while in the bulk, the director tilts out of the flow–flow gradient plane. At large strain amplitudes, the oscillations of the director are symmetric, close to the wall, and propagate into the bulk. Here, a twinning is observed where the director rotates out-of-plane in two opposite directions. Using the sequence of physical process method to analyze the LAOStrain response for both the mechanical and structural response, we locate the yielding in a small time-window around flow reversal and identify that the bulk is the main contributor to the mechanical response. The structural response to LAOStress is much less pronounced even when the stress amplitude causes significant shear thinning.
000903530 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000903530 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903530 7001_ $$00000-0003-0696-206X$$aWestermeier, F.$$b1
000903530 7001_ $$0P:(DE-HGF)0$$aHirsemann, H.$$b2
000903530 7001_ $$0P:(DE-HGF)0$$aStruth, B.$$b3
000903530 7001_ $$00000-0002-8181-158X$$aHermida-Merino, D.$$b4
000903530 7001_ $$0P:(DE-HGF)0$$aWagner, U. H.$$b5
000903530 7001_ $$00000-0002-5174-5024$$aDonley, G. J.$$b6
000903530 7001_ $$00000-0002-3432-5044$$aRogers, S. A.$$b7
000903530 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b8$$eCorresponding author
000903530 773__ $$0PERI:(DE-600)1472743-2$$a10.1063/5.0069458$$gVol. 33, no. 12, p. 123104 -$$n12$$p123104 -$$tPhysics of fluids$$v33$$x1070-6631$$y2021
000903530 8564_ $$uhttps://juser.fz-juelich.de/record/903530/files/5.0069458.pdf$$yPublished on 2021-12-10. Available in OpenAccess from 2022-12-10.
000903530 909CO $$ooai:juser.fz-juelich.de:903530$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188512$$aForschungszentrum Jülich$$b0$$kFZJ
000903530 9101_ $$0I:(DE-588b)2008985-5$$60000-0003-0696-206X$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000903530 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b8$$kFZJ
000903530 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000903530 9141_ $$y2021
000903530 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903530 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS FLUIDS : 2019$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000903530 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000903530 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000903530 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903530 920__ $$lyes
000903530 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000903530 980__ $$ajournal
000903530 980__ $$aVDB
000903530 980__ $$aUNRESTRICTED
000903530 980__ $$aI:(DE-Juel1)IBI-4-20200312
000903530 9801_ $$aFullTexts