001     903530
005     20220103172043.0
024 7 _ |a 10.1063/5.0069458
|2 doi
024 7 _ |a 1070-6631
|2 ISSN
024 7 _ |a 1089-7666
|2 ISSN
024 7 _ |a 1527-2435
|2 ISSN
024 7 _ |a 2128/29449
|2 Handle
024 7 _ |a WOS:000731931700006
|2 WOS
037 _ _ |a FZJ-2021-05198
082 _ _ |a 530
100 1 _ |a Korculanin, Olivera
|0 P:(DE-Juel1)188512
|b 0
245 _ _ |a Anomalous dynamic response of nematic platelets studied by spatially resolved rheo-small angle x-ray scattering in the 1–2 plane
260 _ _ |a [S.l.]
|c 2021
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639406493_434
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dispersions of colloidal platelets in the nematic phase display strong wall anchoring, which competes with the reorientational motion of the director when the system is subjected to flow. We show that the mechanical response to large amplitude oscillatory strain and stress depends on the confinement of the system due to this competition. We elucidate the underlying structural response by deflecting a x-ray beam vertically along the vorticity direction of a Couette geometry, such that the structure can be probed throughout the gap with an unprecedented spatial resolution while recording in situ the mechanical response. We observe strong inhomogeneities in terms of the orientation of the nematic director, depending on the extent of the system's yield during an oscillation. At small strain amplitudes, we observe a small region where the director oscillates between wall anchoring and the Leslie angle, while in the bulk, the director tilts out of the flow–flow gradient plane. At large strain amplitudes, the oscillations of the director are symmetric, close to the wall, and propagate into the bulk. Here, a twinning is observed where the director rotates out-of-plane in two opposite directions. Using the sequence of physical process method to analyze the LAOStrain response for both the mechanical and structural response, we locate the yielding in a small time-window around flow reversal and identify that the bulk is the main contributor to the mechanical response. The structural response to LAOStress is much less pronounced even when the stress amplitude causes significant shear thinning.
536 _ _ |a 5243 - Information Processing in Distributed Systems (POF4-524)
|0 G:(DE-HGF)POF4-5243
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Westermeier, F.
|0 0000-0003-0696-206X
|b 1
700 1 _ |a Hirsemann, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Struth, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hermida-Merino, D.
|0 0000-0002-8181-158X
|b 4
700 1 _ |a Wagner, U. H.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Donley, G. J.
|0 0000-0002-5174-5024
|b 6
700 1 _ |a Rogers, S. A.
|0 0000-0002-3432-5044
|b 7
700 1 _ |a Lettinga, M. P.
|0 P:(DE-Juel1)130797
|b 8
|e Corresponding author
773 _ _ |a 10.1063/5.0069458
|g Vol. 33, no. 12, p. 123104 -
|0 PERI:(DE-600)1472743-2
|n 12
|p 123104 -
|t Physics of fluids
|v 33
|y 2021
|x 1070-6631
856 4 _ |u https://juser.fz-juelich.de/record/903530/files/5.0069458.pdf
|y Published on 2021-12-10. Available in OpenAccess from 2022-12-10.
909 C O |o oai:juser.fz-juelich.de:903530
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188512
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 0000-0003-0696-206X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130797
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5243
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS FLUIDS : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21