TY  - JOUR
AU  - Korculanin, Olivera
AU  - Kochetkova, T.
AU  - Lettinga, M. P.
TI  - Competition Between Red Blood Cell Aggregation and Breakup: Depletion Force due to Filamentous Viruses vs. Shear Flow
JO  - Frontiers in physics
VL  - 9
SN  - 2296-424X
CY  - Lausanne
PB  - Frontiers Media
M1  - FZJ-2021-05199
SP  - 721368
PY  - 2021
AB  - Human blood is a shear-thinning fluid with a complex response that strongly depends on the red blood cell’s (RBC’s) ability to form aggregates, called rouleaux. Despite numerous investigations, microscopic understanding of the break up of RBC aggregates has not been fully elucidated. Here, we present a study of breaking up aggregates consisting of two RBCs (a doublet) during shear flow. We introduce the filamentous fd bacteriophage as a rod-like depletant agent with a very long-range interaction force, which can be tuned by the rod’s concentration. We visualize the structures while shearing by combining a home-build counter-rotating cone-plate shear cell with microscopy imaging. A diagram of dynamic states for shear rates versus depletant concentration shows regions of different flow responses and separation stages for the RBCs doublets. With increasing interaction forces, the full-contact flow states dominate, such as rolling and tumbling. We argue that the RBC doublets can only undergo separation during tumbling motion when the angle between the normal of the doublets with the flow direction is within a critical range. However, at sufficiently high shear rates, the time spent in the critical range becomes too short, such that the cells continue to tumble without separating.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000726554800001
DO  - DOI:10.3389/fphy.2021.721368
UR  - https://juser.fz-juelich.de/record/903531
ER  -