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Abstract

Video microscopy on fluorescently labeled semi-flexible, slender, monodisperse col-

loidal rods in a host dispersion of unlabeled rods reveals a complex skating-type motion.
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Trajectories of single rods consist of a zig-zag sequence of paths where rods move within

a tube set up by the surrounding rods. We show that head-on collisions within the tube

affect the dynamics in a fundamental way, leading to a unique anomalous splitting of

the distribution of particle displacements. Based on this log jamming process and rel-

atively weak tube confinement, we propose an improved coupling relation between the

parallel and perpendicular motion of individual rods within a tube.

Introduction

The strongly hindered diffusion of entangled stiff polymers underlies their structural function

in biological systems,1–3 polymeric materials,4 food products5 and biomimetic hydrogels.6,7

Thus, understanding the diffusive processes of rod-like macromolecules is a prerequisite for

the design of material properties, and is fundamental to understand more complex systems,

as stiff polymers have fewer degrees of freedom than regular polymers. In the late 1970s,

Doi proposed a theory for rod diffusion based on geometrical arguments8,9 and used it to

determine the rheological response of rod dispersions.10 Key to the Doi model is that rods

are caged in a tube set by the surrounding rods, restricting the reorientational motion of

the rod. In this model, rods can only rotate over a limited angle after translating half of

their length out of the tube. An essential assumption in the theory is that this diffusion

along the long axis of the rod is unhindered, as only very slender rods are considered.

Though simulations tend to support the Doi model ,11–14 the tube-concept has been debated

,13,15–21 as well as the assumed free parallel diffusion.13,22 Edwards and Evans (EE) added

the possibility of head-on collisions between the rods and thereby derived a concentration

dependent translational diffusion coefficient for motion along the long axis, which changes

the dynamics in a qualitative way as compared to the original Doi theory. This log jamming

model results in a glass transition at a location that depends on an unknown parameter .22

In order to establish the origin of such a fundamentally different dynamics, it is necessary

to be able to define tubes and to probe both the rotational and translational dynamics of
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single rods within the tubes. We achieve this here by imaging the motion of monodisperse

filamentous viruses, a model system for colloidal rods, by means of video microscopy. Such

a single particle approach has been successfully exploited to characterize the anomalous

motion in ordered phases.23–25 We will show how sequencing of rod trajectories into tubes

uncovers novel dynamics, confirming the concepts in the EE-theory and leading to a better

understanding of averaged diffusion rates and the glass transition.

So far, experimental efforts supplied self or collective rotational and translational diffusion

coefficients on a plethora of rod-like particles, using averaging techniques like dynamic light

scattering, rheology, NMR, and fluorescence recovery after photobleaching.26–33 Although

these experiments confirmed the trend of the Doi model, deviations were found that could

partly be attributed to flexibility of the systems. A more fundamental issue is that these

ensemble averaging techniques do not allow to study the coupling between translation and

rotation of the rods. For a full understanding it is a prerequisite to obtain the diffusion along

and rotation of the long axis simultaneously, which requires imaging techniques. Imaging

experiments on low aspect ratio ellipsoids confirmed the hydrodynamic relation between

translation and rotation,34 as well as a non-trivial coupling,35 while high concentrations a

sub-diffusive behavior was disclosed for low aspect ratio-rods,36 similar to the caging dy-

namics of colloidal spheres.37,38 Sub-diffusive behavior has also been found for high aspect

ratio rod-shaped particles such as very slender filaments.39–42 These studies focus, however,

on the relaxation perpendicular to the imaginary tube. A study on rod-like grains in micro-

gravity,43 which approach the ideal system of slender rods, does discriminate in the direction

of the motion, but with respect to mechanic excitation of the non- Brownian particles.

In this paper we first introduce the system of quasi-ideal rods, the imaging procedure

of these rods and the analysis technique that we developed to identify the tubes and the

motion within the tubes. We then discuss the dynamics within the tube and the new model

that evolves from these results.
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Figure 1: a) AFM images of M13k07. All rods were 1.2 µm in length. (b) Fluorescence
image of M13k07. The arrow indicates the orientation obtained from the analysis.

Experimental

M13k07 has a contour length of L = 1.2 µm, a persistence length of lp = 2.8 µm and

effective thickness of d = 10 nm, when dispersed in a buffer of 100 mM NaCl and 20 mM

Tris.44 For our experiments we used the same batch of M13k07 as was used in Ref.45 They

were grown and purified using a standard protocol46 and partly labeled (ratio 1:1000) with

Alexa Fluor488 (ThermoFischer). The length was checked using atomic force microscopy

(AFM, Agilent 5500 with MSNL-F cantilevers), see Fig. 1a, and confirmed to be 1.2 µm.

We determined the concentration of the separated isotropic and nematic phases by UV-VIS.

The isotropic-nematic binodal is located at 19.0 mg/ml, which is the predicted location for

a rod with a contaour length of 1.2 µm and a persistence length of 2.8 µm.

We track the position and orientation of fluorescently labeled filamentous M13k07 viruses

in dispersions of unlabeled viruses by means of fluorescence microscopy at concentrations up

to the isotropic-nematic phase (I-N) transition at 19 mg/ml. For imaging, a Zeiss Axiovert

microscope was equipped with a 100x NA 1.4 oil immersion objective, a Prizmatix LED lamp

and an Andor sCMOS camera, running at frame rates between 10 and 100 fps, depending on

the concentration. 10 µm latex beads were added to the suspension to fix the gap between

the object glass and the cover slip and we focused the microscope in the middle of this gap.
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Figure 2: a) Distribution of projected lengths Lproj as detected by fluorescence microscopy.
The vertical lines indicate the lower and upper boundaries of projected lengths selected for
further analysis. (b) Mean square angular displacement for different projected lengths Llow.
The dashed line is a linear fit. (c) Apparent rotational diffusion as function of Llow. The
dashed line indicates the theoretical value.

Analysis

Particle orientation tracking

Due to the limited size of the rods, the particles appear as elongated blobs when imaged by

florescent microscopy. The particles were first detected by thresholding the 2D image and

detecting the blobs approximately. A square region of interest of the original image, see Fig.

1b, positioned around the blob, is fitted by a 2D Gaussian, defined as A exp−(x′−x0)
2/2σ′2

x +

(y−y0)
2)/2σ′2

y , with (x0, y0) the coordinates defining the center-of-mass of the particle, σx′,y′

the standard deviations respectively, and x′, y′ the coordinates of a frame rotated by angle

θ, responsible for the orientation of the blob.

As the limited z-resolution precludes detection of their orientation in 3D, we refrained

from full 3D analysis.47 We access the dynamics by selecting the data of those trajectories

where rods were oriented in the lateral plane, based on the imaged length of the rod. The im-

aged length was correlated to the largest blob width σmax by simulating the optical diffracted

image of an ideal M13k07. A full in-plane virus complies with σmax = 0.6 L. The isotropic

distribution of rods results in a wide distribution of projected lengths Lproj, corresponding

to the projections of the full length L in the plane of observation, see Fig. 2a.
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Figure 3: Results of angular trajectory reconstruction containing a jump (a), and a perfect
trajectory reconstruction that passes the π

2
limit (b). The dots denote the datapoints used

in the analysis, while the lines are a guide to the eye.

The trajectory is selected when Llow < Lproj < Lhigh, as indicated by the vertical lines

in Fig. 2b, which depicts the size length distribution of Lproj. Lhigh = L is chosen to

remove the very sparse dimers from the analysis, although this analysis confirmed that the

produced batch contained almost no dimers. The choice of Llow affects the determination of

the rotational diffusion, as the accuracy of the detected in-plane angle depends on the aspect

ratio of the blob. Indeed, the offset in the mean angular displacement at infinite dilution

decreases with increasing Llow, see Fig. 2b. In addition, the apparent rotational diffusion

constant, which is calculated from the slope, decreases with increasing Llow, see Fig. 2c.

This is to be expected as the rotation of an out-of-plane rod by an angle θ of the long axis

results in a bigger apparent projected angle θobs > θ in the lateral observation plane. For

Llow > 0.75L a value of D0
rot = 11 s−1, which is the same as the theoretical prediction for

slender rods D0
rot =

3kBT
πη0L3 ln

L
d
, where d is the diameter of the rod, and η0 the viscosity of

the solvent.48 This result confirms that with the restriction of selecting those rods that are

oriented in the detection plane does not affect the final result. If too many rods are discarded,

the statistics deteriorates. We therefore decided to use Llower = 0.75Lhigh as lower bound

length. The number of tracked particles per concentration varied between 103 for low and
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5× 103 for high concentrations.

In determining the reorientational motion of the rods, we took the degeneracy in the

detection of the angle into account. The orientation of a rod is determined in one quadrant,

between −π
2

and π
2
. A problem occurs when a rod rotates out of this quadrant into the

neighbouring quadrant.

Although the actual rotation ∆ might be very small, it will effectively undergo a jump

of around π −∆. We resolved this issue by detecting the endpoints of the rod and tracking

their movement. The endpoints were detected by skeletonizing the blob and determining

the endpoints through an in-built Matlab routine. Depending on the displacement of these

endpoints near the boundaries of the 1st and the 2nd quadrant, the transition between the

quadrants can be identified and the full angular trajectory can be reconstructed. Despite

the algorithm performing well on the majority of the trajectories (> 95%), it was not error

proof, as can be seen in Fig. 3a where a sudden jump occurs.

Tube extraction

At high concentrations, trajectories typically consist of a sequence of curved paths, which

are connected at points where the trajectory becomes discontinuous as in a skating motion,

see Fig. 4 and SI for movies. Analysis of the dynamics within the tubes in curvilinear

coordinates is needed to understand the dynamics of the full trajectory, including jumps

between tubes. We developed an algorithm to identify the sequence of tubes, allowing for

such an analysis. Starting at time tstart, a cubic spline with a bending penalty, also known

as a smoothing spline, f(x) defined by the minimalization of the quantity p
∑

i(yi−f(xi))
2+∫

f ′′(x)2dx, where p is the smoothing factor, given as 10−3 in our analysis, was fitted through

the trajectory up to time tstart+i with the standard MATLAB procedure and the mean square

error (MSE) was calculated. In order to obtain the best fit and to avoid multiple y-points

for a single x point, the selected sequence was fitted for multiple rotations around its center

of mass, and the orientation with the lowest MSE ( measured in µm2) was chosen. When
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Figure 4: The efficiency of the tube detection in function of MSE filter (a to c). For the
same trajectory, only stiffer tubes pass through the filter as the higher bound on the MSE
becomes lower. The black arrows indicate the orientation of the rod at that point in time
and the circles indicate the corresponding centre-of-mass (COM). The colored lines indicate
the resolved tubes. In (c) we also indicate the order in time of the detected tubes, where
t1 < t2 < ...t5.

the resulting MSE was smaller than a preset threshold, then this point was identified as

belonging to the same tube and the counter i was increased by 1. When MSE(tstart+i)

exceeded this value, then the trajectory between tstart and tstart+i−1 was stored as one tube

and a new sequence was started at tstart+i. A next refining step was performed where a set of

two sequential tubes were fitted again with a smoothing spline, recording MSE as a function

of the split position n. The position n, where the sum of both errors was minimal, was set to

be the branching point of the two tubes. By repeating the procedure on the full trajectory,

we were able to separate the complex skating motion of a rod into a set of paths, where only
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paths with a MSE smaller than the threshold value were assigned to a tube. The threshold

value for MSE acts as a filter of the data, which influences the final results. The effect of

the MSE filter on the tube selection is shown in Fig. 4, from which it follows that MSE=2.0

µm2 is the best choice. In SI we show how the MSE threshold affects the results, giving a

quantitative justification for our choice of MSE=2.0 µm2 as threshold value.

This analysis yields the fraction of points within a trajectory that can be assigned to

a tube, Ntube/N and the lifetime of the tube, τtube. Moreover, the motion of the rods can

now be related to the dynamics within the the tube, as a set of curvilinear coordinates that

define the motion parallel to the fitted spline s||, so along the backbone of the tube, and the

motion perpendicular to the fitted spline s⊥, which probes the confinement of the tube. The

definition of the coordinates are graphically depicted in Fig. 5.

Figure 5: Definition of the curvilinear coordinates in a tube.

Results

Number of tubes and tube lifetime

The most prominent observation is the increasing persistence of the paths described by

fluorescently labeled rod-like particles in a background of unlabeled particles with increasing

concentration, see again SI for movies. These paths can be interpreted in terms of Doi’s

model, as the rotation is restricted by a confining tube set by the surrounding particles. The

abrupt end of these tubes suggests that the rod in the tube undergoes a head-on collision

with another rod and is reflected, as in the EE model. This kind of skating or zig-zag motion
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Figure 6: Ratio of points in a tubes over total number of points and average tube lifetime
τtube vs. reduced concentration.

has been observed in simulations,49,50 in experiments on needles through a network of 2D

obstacles51 and on carbon nano-tubes in a dense host system.52 As indicated in the Analysis

section, our analysis of these persistent paths in a trajectories results in the fraction of points

within a trajectory that can be assigned to a tube, Ntube, over the total number of points

in the trajectory N . In addition we obtain the lifetime of the tube, τtube. Both parameters

are plotted as a function of concentration in Fig. 6. Clearly, more tubes can be identified

and survive longer with increasing concentration. For nL3 < 100 no tubes could be isolated,

which means that there is a Limited range where tubes can be defined, which is a basic

assumption in Doi theory.

Mean square displacement

The best way to compare the motion of the viral rods with other experimental work and sim-

ulations is by calculating the mean square displacements (MSD), ⟨r2⟩, and the mean square

angular displacement (MSAD), ⟨θ2⟩full, of the full trajectory, as plotted in Fig. 7a and b, re-

spectively. The motion of the rod-like viruses becomes increasingly restricted with increasing

concentration. We quantify this slowing down by calculating the translational diffusion rate,

Dfull
t , and rotational diffusion rate, Dfull

r from the initial slope of MSD and MSAD, respec-

tively, where full refers to the calculation of diffusion rates by taking points from the entire

trajectory of the particle, without explicit path determination and separation. Dfull
r and
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Figure 7: Translational (a) and angular (b) MSD from full trajectories. Parallel (c), perpen-
dicular (d), and angular (e) MSD within the tube. Lines are fits to determine the diffusion
coefficients. Note that in (b) and (e) we subtracted an offset of ⟨θ2⟩offset ≈ 0.3 rad2, which
is due to the error in the detection of the rod orientation.
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Tube

Figure 8: (a) Dfull
r and Dtube

r vs. reduced concentration (lines are fits to Eq. 1); (b) Dfull
t

and D∥ vs. reduced concentration (line is a fit to Eq. 7). The error bars are within the
symbol size. The grey area indicates the concentration region where no tubes can be defined.

Dfull
t gradually decreases with increasing concentration, see Fig. 8, similar to observations

with averaging techniques for which MS(A)D is the only accessible parameter.30–33

In order to interpret the data we now know, however, that these parameters are averages

over the rotation and translation due to the skating motion, and that the discrete jumps

between the tubes affect the results. We therefore compare the results from the full trajectory

with the results obtained within the tube, for which the MSD and MSAD are given in Fig. 7c-

e. The rotational diffusion Dr we extract from the MSAD is plotted in Fig. 8a vs. nL3,

as Doi’s model predicts the length L and number density n dependence of the rotational

diffusion coefficient to be

Dr = CD0
r(nL

3)−γ. (1)

Here D0
r is the rotational diffusion rate at infinite dilution and γ → 2 in the limit of high

concentrations where tubes can be defined. By fitting the data to Eq. 1, its validity is tested,

yielding γ and the proportionality constant C . We find for the rotational diffusion within
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the tube γ = 1.7 and C = 2.8 ·103, and for the diffusion of the full trajectory we find γ = 1.8

and C = 6.6 · 103. For the full trajectory, C is high because points are taken into account

where no tube can be identified, see Fig. 6. In simulations C ≈ 1.3 · 103 was found,12,53

as well as by rheological experiments on a library of rod-like viruses.45 The somewhat lower

value for γ than the Doi prediction is mainly due to the limited linear regime. This also

seems to hold for the simulations,12–14,18 though much higher values for nL3 can be reached

for infinitely thin rods as these do not display a I-N phase transition. More importantly,

the rigid tube diameter in Doi’s model15,20,21,54 and the effect of the finite thickness of the

rods13,22 have been debated. As we can identify dynamics within a tube, we are able to

elucidate this discussion.

The observation of a skating motion suggests that Doi’s assumption of unhindered parallel

diffusion is not valid. This assumption can be directly tested as we isolated the diffusion

along the contour of a tube, given by s∥. ⟨s2∥⟩ is initially sub-diffusive, and becomes diffusive

after some time τlin, see Fig. 7c. This behavior is typical for glassy systems and is associated

with the relaxation into the long-time diffusion regime after particles have escaped the cage

of surrounding particles.38 We extract the parallel diffusion rate D∥ within the tube from

the final slope in ⟨s2∥⟩, see Fig. 7c, and find that D∥ is indeed smaller than the infinite dilute

parallel diffusion rate D0
∥ and decreases with increasing concentration, see Fig. 8b.

Self-van Hove functions

MSDs are the average ⟨q2(t)⟩ =
∫
dq q2G(q, t) over the time-dependent conditional probabil-

ity G(q, t) to find a particle at time t at a position/angle q, given that at t = 0, q = 0. This

is the so-called Self-van Hove function (SvH). G(q, t) can be directly extracted from particle

positions or angles and contains more information than the averaged ⟨q2(t)⟩, as we will now

discuss. The G(s∥, t) for the parallel displacement within a tube shows a very interesting

effect, namely the development of a minimum at the origin (s∥ = 0), see Fig. 9a. This means

that there is directionality in the movement. If one considers a rod that is restricted in its
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Figure 9: (a) Evolution of the G(s∥, t) for 14 mg/ml, fitted with Eq. 2. The arrow indicates
the order in time, while curves were calculated with a time spacing of ∆t = 70 ms. (b-d)
Fit results vs time: the scaled averaged diffusion rate ⟨D∥⟩/D0

∥ (b); the exponent α∥ (c); the
position of the maximum smax

∥ (d).
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motion only at one end of a tube by a blocking rod, than the probability of finding a particle

in this direction of the original position is less then to the other, free direction. This will

result in a skewed, off-centered distribution. As the problem is symmetric, a minimum will

evolve in the center.

Whilst the splitting is certainly a result of the identification of the tubes, see Fig. 4,

jamming events can also take place within the tube, contributing to the skewed distributions.

This is the case when the relaxation time of the jamming, τrelax, is shorter than the time

to find another tube. Jamming events result in a distribution of diffusion rates, leading

to Laplacian dynamics when probing G(s∥, t) on the timescale of the relaxation time τrelax,

while for much longer times G(s∥, t) should evolve to a Gaussian.55,56 From the above it

follows that jamming will contribute both to the splitting as well as non-Gaussian behavior

of the G(s∥, t). Therefore we fit the data with a function

G(s∥, t) = C
(
exp−(

(s∥ − smax
∥ )2

4⟨D∥⟩t
)α∥ + exp−(

(s∥ + smax
∥ )2

4⟨D∥⟩t
)α∥
)

(2)

that smoothly connects purely Gaussian dynamics, α∥ → 1, with Laplacian dynamics, α∥ →

0.5, but that also describes the splitting, introducing smax
∥ as the position of the maximum.

The brackets ⟨...⟩ indicated an averaging over the instantaneous distribution of diffusion

rates at time t. C is a normalization constant. As can be seen in Fig. 9a, the date is well

described by the function. Note also that the shape of Eq. 2 resembles the starting equation

in the EE-theory.

As expected, we observe that both ⟨D∥⟩/D0
∥, Fig. 9b, and the exponent α∥, Fig. 9c, are

initially very low and more so with increasing concentration. For the lowest concentration

where we could identify tubes, the dynamics almost relaxes to Gaussian. ⟨D∥⟩/D0
∥ almost

relaxes to the value obtained from ⟨s2∥⟩, see Fig. 8b, which is still not completely free.

⟨D∥⟩/D0
∥ and α∥ are not accessible for longer times as splitting becomes too pronounced. At

the highest concentration we find initially α∥ ≈ 0.5 and slow relaxation. The relaxation of

these parameters indeed seems to be correlated with the tube lifetime displayed in Fig. 6
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and gives a more detailed view on the initial sub-diffusive behavior of ⟨s2∥⟩, see Fig.7c. Note

however, that a linear time-dependence of ⟨s2∥⟩ is reached even though the dynamics is still

non-Gaussian with α∥ < 1, as has also been observed for many other complex fluids.42 The

peak separation smax increases with time, see Figs. 9d and S2. It cannot be determined at

short times though it sets in immediately, as we learn from extrapolating smax
∥ (t → 0). smax

.

G(r, t) of the full trajectory, plotted in Fig. 10a, does not show the anomalous splitting,

so rmax = 0. It does show more strongly non-Gaussian dynamics, Fig. 10c, as compared to

the dynamics within the tube, Fig. 9c, so αt < α∥. The reason is that the dynamics does

now not depend only on blocking and relaxation events within the tube, but also on the

rotation that a rod undergoes when it jumps from one tubes into another, which randomizes

the direction of translation. Again, though ⟨r2(t)⟩ is linear, αt < 1 so the dynamics is non-

Gaussian. This is similar to observations in simulations14 and experiments like mechanically

excited granular rods43 and very similar to rod-like viruses in polymer solutions.57 Values of

αt < 1 can be attributed to a distribution in diffusion rates,56 which is clearly the case when

analysing full trajectories as in these references.

With our analysis, where we split up the full trajectory in tube-segments, we indeed

identify the different contributions as we disentangled the diffusion along the long axis of the

rod from the jump between tubes. The distributions do relax towards Gaussian dynamics

where αt → 1, Fig. 10c, along with the averaged diffusion rate ⟨Dfull
t ⟩, Fig. 10b, which

approaches the value obtained from ⟨r2⟩. This relaxation is related with the number of re-

orientations of the rod. However, αt = 1 is never reached even for low concentrations, due

to the limited statistics at the long times needed for complete randomization.
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Figure 10: (a) Evolution of the G(r, t) for 14 mg/ml, fitted with Eq. 2. The arrow indicates
the order in time, while curves were calculated with a time spacing of ∆t = 70 ms. (b,c) Fit
results vs time: diffusivity parameter ⟨Dfull

t ⟩ (b) and exponent of the translational motion
αt (c).
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Figure 11: (a) Cartoon of a head-on collision and the connected geometry. (b) Scaling the
relaxation in exponent α∥, see Fig. 9c, with the calculated τb, Eq. 5.

Discussion: adjusted Edwards-Evans model

The heterogeneity in the dynamics as identified by the self-van Hove function for the isolated

tubes, combined with the abrupt ends of the tubes, suggest that the rods are confined by

Doi tubes and undergo log jamming, where the head of the rods hits the side of another rod

that crosses the tube. Slowing down of the dynamics could in principle also be caused purely

by an increase in the hydrodynamic interactions. This would not lead, however, to a more

pronounced heterogeneity. Moreover, it has been shown that hydrodynamic interactions

for such slender rods in the isotropic phase hardly affect the diffusion.24 The notion of log

jamming for high aspect ratio rods might seem counter intuitive and therefore we investigate

if the slowing down of the parallel diffusion D∥, predicted by the EE model, is realistic. In

this model, the concentration dependence of D∥ is given by
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D∥ = D0
∥(1 + gρbLτrelax)

−1, (3)

where g is a constant, ρb is the number of barriers per unit length per time, and τrelax is the

time it takes for the barrier to relax. We derive ρb by calculating the mean free pathway

λ between two blocking rods, as illustrated by the blue en green rod in Fig. 11a, assuming

that very slender particles can only be blocked by a side collision with another particle.

If we consider that any direct interaction with the particle surface results in an effective

jamming, then the total interaction area of two rods is given by Sint = 2Ld cos(θ), where

θ is the angle between the long-axis of the particles and d the particle thickness, see Fig.

11a. The definition of the mean free pathway λ implies that the volume V = Sintλ contains

on average 1 particle, so that nV = 1. Averaging the interaction surface over the angle, we

obtain ⟨Sint⟩ = 4Ld
π

, so that

λ =
π

4nLd
. (4)

The average time between two head-on collisions is then given by

τb =
λ2

2D0
∥
. (5)

We test the viability of this approach, assuming that the relaxation in α∥, see Fig. 9c, is due

to the rate at which the distribution of diffusion rates relaxes, as described in Ref.56 This

rate is low when the frequency of blocking events, causing also the distribution in diffusion

rates, is high. As this frequency increases with increasing concentration, we scale time by

1/τb, which is purely based on the geometry and concentration of the rods. Indeed, we see

now in Fig. 11b that all curves of α∥ vs t τb overlay. This confirms that head-on collisions
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slow down dynamics so that we can write for ρb

ρb =
2D0

∥

λ3
. (6)

Next, we need to identify the relaxation time of the tube, τrelax. In the EE model, the

relaxation mechanism is due to parallel diffusion of the blocking rod over its full length,

which suggests that there is no significant perpendicular diffusion. We indeed observe that

the perpendicular diffusion levels off, confirming the presence of an effective tube. However,

the plateau that is reached exceeds the rod diameter by at least one order of magnitude, see

Fig. 7b, and is thus much bigger than the 1/nL2 suggested by Doi. Although the increased

effective tube diameter could be due to flexibility,19,20,40,58 there are many arguments in favor

of a less constraining tube.14,16,20,21,54 Hence, we propose a perpendicular diffusive relaxation

mechanism needed to overcome the barrier. This relaxation mechanism can be described

by the relaxation time τrelax = d2

2Dseg
⊥

, where Dseg
⊥ is the perpendicular diffusion rate of the

segment at the tip of the virus, which can either be due to flexibility or perpendicular

diffusion.20,52 This relaxation is much faster than suggested by the EE model. We now find

D∥ = D0
∥

(
1 + (

4

π
)3g n∗3p−5

D0
∥

Dseg
⊥

)−1

, (7)

where we introduced the overlap concentration n∗ = L3n and the aspect ratio p = L/d.

Eq. 7 is an insightful relation as it shows an extreme dependence on the aspect ratio,

which competes with an inverted dependence on the overlap concentration. In the limit of

infinitely thin rods, the equation reduces to D∥ = D0
∥, so the Doi limit is recovered. The

dynamics freezes when the tube diameter approaches the rod diameter, so D∥ → 0. Thus,

Eq. 7 also gives a dynamic criterion for a glass transition of rods, complementing earlier

static definitions .59,60 A fit of D∥ vs nL3 with Eq. 7, see Fig. 8b, yields g
D0

∥
Dseg

⊥
≈ 170.

Given the assumptions made in the theory, we consider this result to be a direct indication

of the diffusion mechanism within the tube. With g = O(1) from the EE model, we find
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Dseg
⊥ = O(10−2 D0

⊥). This shows a significant slowing down even though the tube diameter,

which we obtain from the plateau values in Fig. 7d, only decreases down to ≈ 70 nm, which

is still much larger than the rod diameter. To complete the picture, it would be helpful to

conduct simulations on slender rods in order to identify log jamming events and to revisit

theories on the tube diameter.

Conclusion

In conclusion, disentangling trajectories of fluorescent semi-flexible monodisperse colloidal

rods in semi-dilute dispersion elucidates an anomalous splitting in the distribution of the

particle displacement along the isolated tubes. The slowing down of the parallel diffusion

within a confining tube due to the underlying log jamming motivated the formulation of a

non-trivial coupling relation between the parallel and perpendicular motion. This relation

can be used to predict a dynamic glass transition for many emerging macromolecular systems.

Associated content

Supporting Information Available: The following files are available free of charge. File name.

It contains 1) additional information concerning the effect of the MSE threshold on the

resulting extracted diffusion parameters. Movies M13-conc0.04.avi, Movie M13-conc7.7.avi

and M13-conc19.avi are real time video microscopy movies of fluorescently labeled viruses

moving in a dispersions of 0.04, 7.7 and 19 mg/ml of unlabeled viruses, respectively.
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