000903551 001__ 903551
000903551 005__ 20240712084501.0
000903551 0247_ $$2doi$$a10.1002/smtd.202100661
000903551 0247_ $$2Handle$$a2128/29607
000903551 0247_ $$2altmetric$$aaltmetric:112810632
000903551 0247_ $$2pmid$$apmid:34927925
000903551 0247_ $$2WOS$$aWOS:000692464600001
000903551 037__ $$aFZJ-2021-05219
000903551 082__ $$a620
000903551 1001_ $$00000-0002-0920-5390$$aAlvarez, Agustin O.$$b0$$eCorresponding author
000903551 245__ $$aCombining Modulated Techniques for the Analysis of Photosensitive Devices
000903551 260__ $$aWeinheim$$bWILEY-VCH Verlag GmbH & Co. KGaA$$c2021
000903551 3367_ $$2DRIVER$$aarticle
000903551 3367_ $$2DataCite$$aOutput Types/Journal article
000903551 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640430833_10319
000903551 3367_ $$2BibTeX$$aARTICLE
000903551 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903551 3367_ $$00$$2EndNote$$aJournal Article
000903551 520__ $$aSmall perturbation techniques such as impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) are useful tools to characterize and model the optoelectronic properties of photovoltaic and photoelectrochemical devices. The analysis of the impedance spectra is generally carried out through the modeling of the internal processes occurring in the device with an equivalent circuit. Whereas the analysis of the intensity-modulated spectroscopies is often focused on the characteristic response times that are associated with physical mechanisms such as recombination or transport. In this work, we propose a procedure to analyze photosensitive devices by combining these three techniques. This procedure allows the accurate identification of the common equivalent circuit and the subsequent application to fitting the three spectra. As a result, together with the electrical parameters associated to charge transport, accumulation and recombination, it is possible to obtain optoelectronic parameters such as the charge separation efficiency, external and internal quantum efficiency. Our theoretical approach is experimentally applied in the characterization of a silicon photodiode, illustrating the intrinsical relationship between these techniques. This procedure has a great potential to contribute to the characterization and understanding of the operating principles that govern the response of photoactive devices.
000903551 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903551 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x1
000903551 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903551 7001_ $$0P:(DE-Juel1)180551$$aRavishankar, Sandheep$$b1
000903551 7001_ $$00000-0002-7503-1245$$aFabregat-Santiago, Francisco$$b2$$eCorresponding author
000903551 773__ $$0PERI:(DE-600)2884448-8$$a10.1002/smtd.202100661$$gVol. 5, no. 10, p. 2100661 -$$n10$$p2100661 -$$tSmall methods$$v5$$x2366-9608$$y2021
000903551 8564_ $$uhttps://juser.fz-juelich.de/record/903551/files/Small%20Methods%20-%202021%20-%20Alvarez%20-%20Combining%20Modulated%20Techniques%20for%20the%20Analysis%20of%20Photosensitive%20Devices.pdf$$yOpenAccess
000903551 909CO $$ooai:juser.fz-juelich.de:903551$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903551 9101_ $$0I:(DE-HGF)0$$60000-0002-0920-5390$$aExternal Institute$$b0$$kExtern
000903551 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180551$$aForschungszentrum Jülich$$b1$$kFZJ
000903551 9101_ $$0I:(DE-HGF)0$$60000-0002-7503-1245$$aExternal Institute$$b2$$kExtern
000903551 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903551 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
000903551 9141_ $$y2021
000903551 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000903551 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000903551 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL METHODS : 2019$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000903551 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL METHODS : 2019$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903551 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000903551 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000903551 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000903551 9801_ $$aFullTexts
000903551 980__ $$ajournal
000903551 980__ $$aVDB
000903551 980__ $$aUNRESTRICTED
000903551 980__ $$aI:(DE-Juel1)IEK-5-20101013
000903551 981__ $$aI:(DE-Juel1)IMD-3-20101013