001     903551
005     20240712084501.0
024 7 _ |a 10.1002/smtd.202100661
|2 doi
024 7 _ |a 2128/29607
|2 Handle
024 7 _ |a altmetric:112810632
|2 altmetric
024 7 _ |a pmid:34927925
|2 pmid
024 7 _ |a WOS:000692464600001
|2 WOS
037 _ _ |a FZJ-2021-05219
082 _ _ |a 620
100 1 _ |a Alvarez, Agustin O.
|0 0000-0002-0920-5390
|b 0
|e Corresponding author
245 _ _ |a Combining Modulated Techniques for the Analysis of Photosensitive Devices
260 _ _ |a Weinheim
|c 2021
|b WILEY-VCH Verlag GmbH & Co. KGaA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640430833_10319
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Small perturbation techniques such as impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) are useful tools to characterize and model the optoelectronic properties of photovoltaic and photoelectrochemical devices. The analysis of the impedance spectra is generally carried out through the modeling of the internal processes occurring in the device with an equivalent circuit. Whereas the analysis of the intensity-modulated spectroscopies is often focused on the characteristic response times that are associated with physical mechanisms such as recombination or transport. In this work, we propose a procedure to analyze photosensitive devices by combining these three techniques. This procedure allows the accurate identification of the common equivalent circuit and the subsequent application to fitting the three spectra. As a result, together with the electrical parameters associated to charge transport, accumulation and recombination, it is possible to obtain optoelectronic parameters such as the charge separation efficiency, external and internal quantum efficiency. Our theoretical approach is experimentally applied in the characterization of a silicon photodiode, illustrating the intrinsical relationship between these techniques. This procedure has a great potential to contribute to the characterization and understanding of the operating principles that govern the response of photoactive devices.
536 _ _ |a 121 - Photovoltaik und Windenergie (POF4-121)
|0 G:(DE-HGF)POF4-121
|c POF4-121
|f POF IV
|x 0
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ravishankar, Sandheep
|0 P:(DE-Juel1)180551
|b 1
700 1 _ |a Fabregat-Santiago, Francisco
|0 0000-0002-7503-1245
|b 2
|e Corresponding author
773 _ _ |a 10.1002/smtd.202100661
|g Vol. 5, no. 10, p. 2100661 -
|0 PERI:(DE-600)2884448-8
|n 10
|p 2100661 -
|t Small methods
|v 5
|y 2021
|x 2366-9608
856 4 _ |u https://juser.fz-juelich.de/record/903551/files/Small%20Methods%20-%202021%20-%20Alvarez%20-%20Combining%20Modulated%20Techniques%20for%20the%20Analysis%20of%20Photosensitive%20Devices.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903551
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-0920-5390
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180551
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-7503-1245
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL METHODS : 2019
|d 2021-01-31
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL METHODS : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21