000903575 001__ 903575
000903575 005__ 20240712084557.0
000903575 0247_ $$2doi$$a10.1088/1742-6596/2116/1/012064
000903575 0247_ $$2ISSN$$a1742-6588
000903575 0247_ $$2ISSN$$a1742-6596
000903575 0247_ $$2Handle$$a2128/29457
000903575 037__ $$aFZJ-2021-05230
000903575 082__ $$a530
000903575 1001_ $$0P:(DE-Juel1)173874$$aLiu, Xiongguo$$b0$$eCorresponding author$$ufzj
000903575 245__ $$aNew H 2 O weighted sum of gray gases model for natural convection flows within large cavities
000903575 260__ $$aBristol$$bIOP Publ.$$c2021
000903575 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2021-11-01
000903575 264_1 $$2Crossref$$3print$$bIOP Publishing$$c2021-11-01
000903575 3367_ $$2DRIVER$$aarticle
000903575 3367_ $$2DataCite$$aOutput Types/Journal article
000903575 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639487305_7238
000903575 3367_ $$2BibTeX$$aARTICLE
000903575 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903575 3367_ $$00$$2EndNote$$aJournal Article
000903575 520__ $$aRadiation heat transfer plays a significant role in buoyancy driven flows for large scale facilities. In the analysis of nuclear containment safety during severe accidents, it has been found that the thermal radiation particularly affects the temperature distribution and containment pressurization due to the humidity environment. In order to model thermal radiation, one of the main challenges is the description of nongray gas property for the steam-air mixtures. The weighted sum of gray gases model (WSGG) is a reasonable method in engineering applications because of its computational efficiency. There are many WSGG models available for combustion applications, but none of them is dedicated for low temperature applications. Furthermore, most of the existing WSGG models only provide the fixed partial pressure ratios (e.g., pH2O = 2pCO2 for methane). To overcome this limitation, a tailored WSGG model is derived by the Line-by-Line model for a gas mixture composed of arbitrary concentrations of H2O. This tailored WSGG model is valid for the pressure path length ranging from 0.0001 to 10 atm · m, and for the temperature from 300 to 1200 K. The WSGG correlations are verified against the Line-by-Line benchmark solutions with isothermal/non-isothermal temperatures and homogeneous/non-homogeneous concentrations. The results demonstrate the ability and efficiency of the new tailored WSGG formulation.
000903575 536__ $$0G:(DE-HGF)POF4-1421$$a1421 - Design Basis Accidents and Materials Research (POF4-142)$$cPOF4-142$$fPOF IV$$x0
000903575 542__ $$2Crossref$$i2021-11-01$$uhttp://creativecommons.org/licenses/by/3.0/
000903575 542__ $$2Crossref$$i2021-11-01$$uhttps://iopscience.iop.org/info/page/text-and-data-mining
000903575 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903575 7001_ $$0P:(DE-Juel1)130361$$aKelm, Stephan$$b1$$ufzj
000903575 7001_ $$0P:(DE-HGF)0$$aYin, Chungen$$b2
000903575 7001_ $$0P:(DE-Juel1)130314$$aAllelein, Hans-Josef$$b3$$ufzj
000903575 77318 $$2Crossref$$3journal-article$$a10.1088/1742-6596/2116/1/012064$$bIOP Publishing$$d2021-11-01$$n1$$p012064$$tJournal of Physics: Conference Series$$v2116$$x1742-6588$$y2021
000903575 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/2116/1/012064$$gVol. 2116, no. 1, p. 012064 -$$n1$$p012064$$tJournal of physics / Conference Series$$v2116$$x1742-6588$$y2021
000903575 8564_ $$uhttps://juser.fz-juelich.de/record/903575/files/Liu_2021_J._Phys.%20_Conf._Ser._2116_012064.pdf$$yOpenAccess
000903575 909CO $$ooai:juser.fz-juelich.de:903575$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173874$$aForschungszentrum Jülich$$b0$$kFZJ
000903575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130361$$aForschungszentrum Jülich$$b1$$kFZJ
000903575 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130314$$aForschungszentrum Jülich$$b3$$kFZJ
000903575 9131_ $$0G:(DE-HGF)POF4-142$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1421$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vSicherheit von Kernreaktoren$$x0
000903575 9141_ $$y2021
000903575 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000903575 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000903575 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000903575 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903575 920__ $$lyes
000903575 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000903575 9801_ $$aFullTexts
000903575 980__ $$ajournal
000903575 980__ $$aVDB
000903575 980__ $$aUNRESTRICTED
000903575 980__ $$aI:(DE-Juel1)IEK-6-20101013
000903575 981__ $$aI:(DE-Juel1)IFN-2-20101013
000903575 999C5 $$1Dehbi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nucengdes.2018.10.025$$p176 -$$tNuclear Engineering and Design$$v341$$y2019
000903575 999C5 $$1Dreier$$2Crossref$$oDreier 2008$$y2008
000903575 999C5 $$1Kelm$$2Crossref$$oKelm 2016$$y2016
000903575 999C5 $$1Yin$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apenergy.2016.12.051$$p449 -$$tApplied Energy$$v189$$y2017
000903575 999C5 $$1Modest$$2Crossref$$oModest 2013$$y2013
000903575 999C5 $$1Hottel$$2Crossref$$oHottel 1967$$y1967
000903575 999C5 $$1Kochanov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jqsrt.2016.03.005$$p15 -$$tJournal of Quantitative Spectroscopy and Radiative Transfer$$v177$$y2016
000903575 999C5 $$1Cassol$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijheatmasstransfer.2014.08.032$$p796 -$$tInternational Journal of Heat and Mass Transfer$$v79$$y2014
000903575 999C5 $$1Dorigon$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijheatmasstransfer.2013.05.010$$p863 -$$tInternational Journal of Heat and Mass Transfer$$v64$$y2013
000903575 999C5 $$1Rothman$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jqsrt.2009.02.013$$p533 -$$tJournal of Quantitative Spectroscopy and Radiative Transfer$$v110$$y2009
000903575 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-4073(84)90076-1$$p119 -$$tJournal of Quantitative Spectroscopy and Radiative Transfer$$v32$$y1984
000903575 999C5 $$1Kim$$2Crossref$$9-- missing cx lookup --$$a10.1115/1.2911226$$p946 -$$tJournal of Heat Transfer$$v113$$y1991
000903575 999C5 $$1Smith$$2Crossref$$9-- missing cx lookup --$$a10.1115/1.3245174$$p602 -$$tJournal of Heat Transfer$$v104$$y1982