000903584 001__ 903584
000903584 005__ 20220103172040.0
000903584 0247_ $$2doi$$a10.1016/j.actamat.2021.116790
000903584 0247_ $$2ISSN$$a1359-6454
000903584 0247_ $$2ISSN$$a1873-2453
000903584 0247_ $$2Handle$$a2128/29458
000903584 0247_ $$2altmetric$$aaltmetric:102199617
000903584 0247_ $$2WOS$$aWOS:000641587700001
000903584 037__ $$aFZJ-2021-05238
000903584 041__ $$aEnglish
000903584 082__ $$a670
000903584 1001_ $$00000-0002-9896-0426$$aLedieu, J.$$b0$$eCorresponding author
000903584 245__ $$aThe (110) and (320) surfaces of a Cantor alloy
000903584 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000903584 3367_ $$2DRIVER$$aarticle
000903584 3367_ $$2DataCite$$aOutput Types/Journal article
000903584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639553632_11798
000903584 3367_ $$2BibTeX$$aARTICLE
000903584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903584 3367_ $$00$$2EndNote$$aJournal Article
000903584 520__ $$aThe (110) and (320) surfaces of the single-phase FeCrMnNiCo solid solution have been studied on two adjacent millimeter size grains using surface science and transmission electron microscopy (TEM) techniques. The structural and chemical evolutions of the high entropy alloy (HEA) surfaces have been determined for various sputtering conditions, annealing temperatures and durations. Up to 873 K, angle-resolved X-ray photoelectron spectroscopy measurements indicate a clear Mn and Ni surface co-segregation. We propose that the surface segregation of Mn is driven by its low surface energy. The attractive interaction between Mn and Ni promotes Ni segregation which accompanied the Mn diffusion to the surface. Regarding the structures investigated by low energy electron diffraction and scanning tunneling microscopy, the (320) surface presents a terraced morphology with an ordered structure consistent with a () termination. On the contrary, the (110) surface reveals an important degree of structural disorder and local reconstructions. Its highly anisotropic morphology resembles rows propagating along the [001] direction. Above 873 K, Mn desorption occurs while the Ni content keeps increasing linearly with the temperature. TEM analysis show no evidence for HEA decomposition into metallic or intermetallic phases even after repeated annealing and sputtering cycles. The above results set the upper temperature limit above which the surface stoichiometry departs from the quinary HEA concept. It also defines the temperature range for the use of FeCrMnNiCo based coating under high vacuum conditions and for aerospace applications.
000903584 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000903584 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903584 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, M.$$b1$$ufzj
000903584 7001_ $$0P:(DE-Juel1)131001$$aThomas, C.$$b2$$ufzj
000903584 7001_ $$0P:(DE-HGF)0$$ade Weerd, M.-C.$$b3
000903584 7001_ $$0P:(DE-HGF)0$$aŠturm, S.$$b4
000903584 7001_ $$00000-0001-7892-8608$$aPodlogar, M.$$b5
000903584 7001_ $$0P:(DE-HGF)0$$aGhanbaja, J.$$b6
000903584 7001_ $$0P:(DE-HGF)0$$aMigot, S.$$b7
000903584 7001_ $$00000-0002-0558-2113$$aSicot, M.$$b8
000903584 7001_ $$0P:(DE-HGF)0$$aFournée, V.$$b9
000903584 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2021.116790$$gVol. 209, p. 116790 -$$p116790 -$$tActa materialia$$v209$$x1359-6454$$y2021
000903584 8564_ $$uhttps://juser.fz-juelich.de/record/903584/files/Ledieu%20HEA-SI.pdf$$yOpenAccess
000903584 8564_ $$uhttps://juser.fz-juelich.de/record/903584/files/Cantor%20Surfaces.pdf$$yOpenAccess
000903584 909CO $$ooai:juser.fz-juelich.de:903584$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich$$b1$$kFZJ
000903584 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131001$$aForschungszentrum Jülich$$b2$$kFZJ
000903584 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000903584 9141_ $$y2021
000903584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2019$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903584 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2019$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000903584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000903584 920__ $$lyes
000903584 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000903584 980__ $$ajournal
000903584 980__ $$aVDB
000903584 980__ $$aUNRESTRICTED
000903584 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000903584 9801_ $$aFullTexts