000903595 001__ 903595
000903595 005__ 20230227201803.0
000903595 0247_ $$2doi$$a10.1002/pssb.202100159
000903595 0247_ $$2ISSN$$a0370-1972
000903595 0247_ $$2ISSN$$a1521-3951
000903595 0247_ $$2altmetric$$aaltmetric:117174113
000903595 0247_ $$2WOS$$aWOS:000704239700001
000903595 037__ $$aFZJ-2021-05249
000903595 041__ $$aEnglish
000903595 082__ $$a530
000903595 1001_ $$0P:(DE-HGF)0$$aBauer, Andreas$$b0$$eCorresponding author
000903595 245__ $$aCompositional Studies of Metals with Complex Order by means of the Optical Floating‐Zone Technique
000903595 260__ $$aWeinheim$$bWiley-VCH$$c2022
000903595 3367_ $$2DRIVER$$aarticle
000903595 3367_ $$2DataCite$$aOutput Types/Journal article
000903595 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677500154_17974
000903595 3367_ $$2BibTeX$$aARTICLE
000903595 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903595 3367_ $$00$$2EndNote$$aJournal Article
000903595 520__ $$aThe availability of large high-quality single crystals is an important prerequisite for many studies in solid-state research. The optical floating-zone technique is an elegant method to grow such crystals, offering potential to prepare samples that may be hardly accessible with other techniques. As elaborated in this report, examples include single crystals with intentional compositional gradients, deliberate off-stoichiometry, or complex metallurgy. For the cubic chiral magnets Mn1–xFexSi and Fe1–xCoxSi, single crystals are prepared in which the composition is varied during growth from x ¼ 0 to 0.15 and fromx ¼ 0.1 to 0.3, respectively. Such samples allow us to efficiently study the evolution of the magnetic properties as a function of composition, as demonstrated by means of neutron scattering. For the archetypical chiral magnet MnSi and the itinerant antiferromagnet CrB2, single crystals with varying initial manganese (0.99–1.04) and boron (1.95–2.1) content are grown. Measurements of the low-temperature properties address the correlation between magnetic transition temperature and sample quality. Furthermore, single crystals of the diborides ErB2, MnB2, and VB2 are prepared. In addition to high vapor pressures, these materials suffer from peritectic formation, potential decomposition, and high melting temperature, respectively.
000903595 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903595 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903595 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000903595 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1
000903595 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000903595 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000903595 693__ $$0EXP:(DE-MLZ)SPODI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPODI-20140101$$6EXP:(DE-MLZ)SR8a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPODI: High resolution powder diffractometer$$fSR8a$$x1
000903595 693__ $$0EXP:(DE-MLZ)RESI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)RESI-20140101$$6EXP:(DE-MLZ)SR8b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eRESI: Thermal neutron single crystal diffractometer$$fSR8b$$x2
000903595 693__ $$0EXP:(DE-MLZ)MIRA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MIRA-20140101$$6EXP:(DE-MLZ)NL6N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMIRA: Multipurpose instrument$$fNL6N$$x3
000903595 7001_ $$0P:(DE-HGF)0$$aBenka, Georg$$b1
000903595 7001_ $$0P:(DE-HGF)0$$aNeubauer, Andreas$$b2
000903595 7001_ $$0P:(DE-HGF)0$$aRegnat, Alexander$$b3
000903595 7001_ $$0P:(DE-HGF)0$$aEngelhardt, Alexander$$b4
000903595 7001_ $$0P:(DE-HGF)0$$aResch, Christoph$$b5
000903595 7001_ $$0P:(DE-HGF)0$$aWurmehl, Sabine$$b6
000903595 7001_ $$0P:(DE-HGF)0$$aBlum, Christian G. F.$$b7
000903595 7001_ $$0P:(DE-HGF)0$$aAdams, Tim$$b8
000903595 7001_ $$0P:(DE-HGF)0$$aChacon, Alfonso$$b9
000903595 7001_ $$0P:(DE-HGF)0$$aJungwirth, Rainer$$b10
000903595 7001_ $$0P:(DE-HGF)0$$aGeorgii, Robert$$b11
000903595 7001_ $$0P:(DE-HGF)0$$aSenyshyn, Anatoliy$$b12
000903595 7001_ $$0P:(DE-Juel1)166245$$aPedersen, Björn$$b13
000903595 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b14
000903595 7001_ $$0P:(DE-HGF)0$$aPfleiderer, Christian$$b15
000903595 773__ $$0PERI:(DE-600)1481096-7$$a10.1002/pssb.202100159$$gp. 2100159 -$$p2100159 -$$tPhysica status solidi / B$$v2100159$$x0370-1972$$y2022
000903595 8564_ $$uhttps://juser.fz-juelich.de/record/903595/files/2111.09764.pdf$$yRestricted
000903595 909CO $$ooai:juser.fz-juelich.de:903595$$pVDB$$pVDB:MLZ
000903595 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b14$$kFZJ
000903595 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b14$$kRWTH
000903595 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903595 9141_ $$y2021
000903595 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000903595 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-31$$wger
000903595 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI B : 2019$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000903595 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000903595 920__ $$lyes
000903595 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903595 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000903595 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903595 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000903595 980__ $$ajournal
000903595 980__ $$aVDB
000903595 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903595 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000903595 980__ $$aI:(DE-82)080009_20140620
000903595 980__ $$aI:(DE-588b)4597118-3
000903595 980__ $$aUNRESTRICTED