000903599 001__ 903599
000903599 005__ 20250129094223.0
000903599 0247_ $$2doi$$a10.1107/S1600576721003198
000903599 0247_ $$2ISSN$$a0021-8898
000903599 0247_ $$2ISSN$$a1600-5767
000903599 0247_ $$2Handle$$a2128/29876
000903599 0247_ $$2altmetric$$aaltmetric:106416222
000903599 0247_ $$2WOS$$aWOS:000659339200011
000903599 037__ $$aFZJ-2021-05253
000903599 082__ $$a540
000903599 1001_ $$0P:(DE-HGF)0$$aMagro, Fernando$$b0$$eCorresponding author
000903599 245__ $$aInfrared furnace for in situ neutron single-crystal diffraction studies in controlled gas atmospheres at high temperatures
000903599 260__ $$a[S.l.]$$bWiley-Blackwell$$c2021
000903599 3367_ $$2DRIVER$$aarticle
000903599 3367_ $$2DataCite$$aOutput Types/Journal article
000903599 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645448753_27839
000903599 3367_ $$2BibTeX$$aARTICLE
000903599 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903599 3367_ $$00$$2EndNote$$aJournal Article
000903599 520__ $$aFor the understanding of oxygen diffusion mechanisms in non-stoichiometric oxides, the possibility to explore structural changes as a function of the oxygen partial pressure with temperature and related oxygen bulk stoichiometry is mandatory. We report here on the realization of a high temperature furnace, suitable for single crystal neutron diffraction, working continuously at temperatures up to 1000°C at different and adjustable partial gas pressures up to 2 bars. This allows to explore the phase diagrams of non-stoichiometric oxides under in operando conditions under controlled oxygen partial pressure. As a pilot study we explored the structural changes of Pr$_2$NiO$_{4+\delta}$ at room temperature ($\delta$ ≈ 0.24), and at 900°C under 1 bar P(O2) ($\delta$ ≈ 0.13) as well as under secondary vacuum (approximately 10$^{-5}$ mbar) condition yielding a $\delta$ close to zero. The strong anharmonic displacements of the apical oxygen atoms along the [110] shallow diffusion pathway, which were previously observed at RT and 400°C, clearly become more isotropic at 900°C. Our study evidences that the anisotropic oxygen displacements, here related to lattice instabilities, play a major role to understand oxygen diffusion pathways and related activation energies at moderate temperatures. This also shows the importance of the availability of such reaction cells for single crystal neutron diffraction to explore the phase diagram and associated structural changes of non-stoichiometric oxygen ion conductors and respective diffusion mechanisms.
000903599 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903599 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000903599 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903599 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
000903599 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000903599 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x2
000903599 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000903599 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000903599 7001_ $$00000-0001-9704-8251$$aCeretti, Monica$$b1
000903599 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b2
000903599 7001_ $$00000-0001-6472-8162$$aPaulus, Werner$$b3
000903599 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576721003198$$gVol. 54, no. 3, p. 822 - 829$$n3$$p822 - 829$$tJournal of applied crystallography$$v54$$x0021-8898$$y2021
000903599 8564_ $$uhttps://juser.fz-juelich.de/record/903599/files/in5048.pdf$$yRestricted
000903599 8564_ $$uhttps://juser.fz-juelich.de/record/903599/files/in5048_source_final.docx$$yOpenAccess
000903599 909CO $$ooai:juser.fz-juelich.de:903599$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000903599 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b2$$kFZJ
000903599 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b2$$kRWTH
000903599 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903599 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000903599 9141_ $$y2021
000903599 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2019$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000903599 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903599 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-29
000903599 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000903599 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000903599 920__ $$lyes
000903599 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903599 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000903599 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903599 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000903599 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x4
000903599 9801_ $$aFullTexts
000903599 980__ $$ajournal
000903599 980__ $$aVDB
000903599 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903599 980__ $$aI:(DE-588b)4597118-3
000903599 980__ $$aI:(DE-82)080009_20140620
000903599 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000903599 980__ $$aI:(DE-Juel1)PGI-4-20110106
000903599 980__ $$aUNRESTRICTED
000903599 981__ $$aI:(DE-Juel1)JCNS-2-20110106