001     9036
005     20210129210455.0
024 7 _ |2 pmid
|a pmid:19687293
024 7 _ |2 DOI
|a 10.1093/cercor/bhp144
024 7 _ |2 WOS
|a WOS:000275566500003
037 _ _ |a PreJuSER-9036
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
100 1 _ |0 P:(DE-HGF)0
|a Grefkes, C.
|b 0
245 _ _ |a Noradrenergic Modulation of Cortical Networks Engaged in Visuomotor Processing
260 _ _ |a Oxford
|b Oxford Univ. Press
|c 2010
300 _ _ |a 783 - 797
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 1171
|a Cerebral Cortex
|v 20
|x 1047-3211
|y 4
500 _ _ |a Marie Curie Early Stage Training Programme "NovoBrain'' funded by the European Union to L. E. W.; Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology to S. B. E.
520 _ _ |a Both animal and human data suggest that stimulation of the noradrenergic system may influence neuronal excitability in regions engaged in sensory processing and visuospatial attention. We tested the hypothesis that the neural mechanisms subserving motor performance in tasks relying on the visuomotor control of goal-directed hand movements might be modulated by noradrenergic influences. Healthy subjects were stimulated using the selective noradrenaline reuptake inhibitor reboxetine (RBX) in a placebo-controlled crossover design. Functional magnetic resonance imaging and dynamic causal modeling (DCM) were used to assess drug-related changes in blood oxygen level-dependent activity and interregional connectivity while subjects performed a joystick task requiring goal-directed movements. Improved task performance under RBX was associated with increased activity in right visual, intraparietal and superior frontal cortex (premotor/frontal eye field). DCM revealed that the neuronal coupling among these regions was significantly enhanced when subjects were stimulated with RBX. Concurrently, right intraparietal cortex and right superior frontal cortex exerted a stronger driving influence on visuomotor areas of the left hemisphere, including SMA and M1. These effects were independent from task difficulty. The data suggest that stimulating noradrenergic mechanisms may rearrange the functional network architecture within and across the hemispheres, for example, by synaptic gating, thereby optimizing motor behavior.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89572
|a 89572 - (Dys-)function and Plasticity (POF2-89572)
|c POF2-89572
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adrenergic Uptake Inhibitors: pharmacology
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Analysis of Variance
650 _ 2 |2 MeSH
|a Bayes Theorem
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Cerebral Cortex: blood supply
650 _ 2 |2 MeSH
|a Cerebral Cortex: drug effects
650 _ 2 |2 MeSH
|a Cerebral Cortex: metabolism
650 _ 2 |2 MeSH
|a Cerebral Cortex: physiology
650 _ 2 |2 MeSH
|a Double-Blind Method
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Functional Laterality: drug effects
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Models, Neurological
650 _ 2 |2 MeSH
|a Morpholines: pharmacology
650 _ 2 |2 MeSH
|a Neural Pathways: blood supply
650 _ 2 |2 MeSH
|a Neural Pathways: drug effects
650 _ 2 |2 MeSH
|a Neural Pathways: physiology
650 _ 2 |2 MeSH
|a Norepinephrine: metabolism
650 _ 2 |2 MeSH
|a Oxygen: blood
650 _ 2 |2 MeSH
|a Photic Stimulation: methods
650 _ 2 |2 MeSH
|a Psychomotor Performance: drug effects
650 _ 2 |2 MeSH
|a Psychomotor Performance: physiology
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Young Adult
650 _ 7 |0 0
|2 NLM Chemicals
|a Adrenergic Uptake Inhibitors
650 _ 7 |0 0
|2 NLM Chemicals
|a Morpholines
650 _ 7 |0 51-41-2
|2 NLM Chemicals
|a Norepinephrine
650 _ 7 |0 7782-44-7
|2 NLM Chemicals
|a Oxygen
650 _ 7 |0 98769-81-4
|2 NLM Chemicals
|a reboxetine
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a effective connectivity
653 2 0 |2 Author
|a noradrenaline
653 2 0 |2 Author
|a parietofrontal circuits
653 2 0 |2 Author
|a pharmacological fMRI
653 2 0 |2 Author
|a visuomotor control
700 1 _ |0 P:(DE-Juel1)VDB75806
|a Wang, L.E.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, G. R.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)1483485-6
|a 10.1093/cercor/bhp144
|g Vol. 20, p. 783 - 797
|p 783 - 797
|q 20<783 - 797
|t Cerebral cortex
|v 20
|x 1047-3211
|y 2010
856 7 _ |u http://dx.doi.org/10.1093/cercor/bhp144
909 C O |o oai:juser.fz-juelich.de:9036
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89572
|a DE-HGF
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|g INM
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
970 _ _ |a VDB:(DE-Juel1)118415
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21