000903600 001__ 903600
000903600 005__ 20220221143525.0
000903600 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.014401
000903600 0247_ $$2ISSN$$a2475-9953
000903600 0247_ $$2ISSN$$a2476-0455
000903600 0247_ $$2Handle$$a2128/29578
000903600 0247_ $$2altmetric$$aaltmetric:97566557
000903600 0247_ $$2WOS$$aWOS:000604570700001
000903600 037__ $$aFZJ-2021-05254
000903600 082__ $$a530
000903600 1001_ $$00000-0002-8168-8024$$aMaity, Sumit Ranjan$$b0$$eCorresponding author
000903600 245__ $$aInterdependent scaling of long-range oxygen and magnetic ordering in nonstoichiometric Nd$_2$NiO$_{4.10}$
000903600 260__ $$aCollege Park, MD$$bAPS$$c2021
000903600 3367_ $$2DRIVER$$aarticle
000903600 3367_ $$2DataCite$$aOutput Types/Journal article
000903600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645448049_27835
000903600 3367_ $$2BibTeX$$aARTICLE
000903600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903600 3367_ $$00$$2EndNote$$aJournal Article
000903600 520__ $$aHole doping in Nd2NiO4.00 can be achieved either by substituting the trivalent Nd atoms by bivalent alkaline-earth metals or by oxygen doping, yielding Nd2NiO4+δ. While the alkaline-earth-metal atoms are statistically distributed on the rare-earth sites, the extra oxygen atoms in the interstitial lattice remain mobile down to ambient temperature and allow complex ordering scenarios depending on δ and T. Thereby the oxygen ordering, usually setting in far above room temperature, adds an additional degree of freedom on top of charge, spin, and orbital ordering, which appear at much lower temperatures. In this study, we investigated the interplay between oxygen and spin ordering for a low oxygen doping concentration, i.e., Nd2NiO4.10. Although the extra oxygen doping level remains rather modest with only 1 out of 20 possible interstitial tetrahedral lattice sites occupied, we observed by single-crystal neutron diffraction the presence of a complex three-dimensional (3D) modulated structure related to oxygen ordering already at ambient, the modulation vectors being ±2/13a*±3/13b*, ±3/13b*±2/13b*, and ±1/5a*±1/2c*, and satellite reflections up to fourth order. Temperature-dependent neutron-diffraction studies indicate the coexistence of oxygen and magnetic ordering below TN≃48 K, the wave vector of the Ni sublattice being k=(100). In addition, magnetic satellite reflections adapt exactly the same modulation vectors as found for the oxygen ordering, evidencing a unique coexistence of 3D modulated ordering for spin and oxygen ordering in Nd2NiO4.10. Temperature-dependent measurements of magnetic intensities suggest two magnetic phase transitions below 48 and 20 K, indicating two distinct onsets of magnetic ordering for the Ni and Nd sublattices, respectively.
000903600 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903600 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903600 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x0
000903600 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000903600 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x2
000903600 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000903600 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000903600 7001_ $$00000-0001-9704-8251$$aCeretti, Monica$$b1
000903600 7001_ $$00000-0002-8492-4117$$aKeller, Lukas$$b2
000903600 7001_ $$00000-0002-3461-4786$$aSchefer, Jürg$$b3
000903600 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b4
000903600 7001_ $$0P:(DE-HGF)0$$aPomjakushina, Ekaterina$$b5
000903600 7001_ $$00000-0001-6472-8162$$aPaulus, Werner$$b6
000903600 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.014401$$gVol. 5, no. 1, p. 014401$$n1$$p014401$$tPhysical review materials$$v5$$x2475-9953$$y2021
000903600 8564_ $$uhttps://juser.fz-juelich.de/record/903600/files/PhysRevMaterials.5.014401.pdf$$yOpenAccess
000903600 909CO $$ooai:juser.fz-juelich.de:903600$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000903600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b4$$kFZJ
000903600 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b4$$kRWTH
000903600 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903600 9141_ $$y2021
000903600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000903600 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000903600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903600 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000903600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000903600 920__ $$lyes
000903600 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903600 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000903600 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000903600 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000903600 980__ $$ajournal
000903600 980__ $$aVDB
000903600 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903600 980__ $$aI:(DE-82)080009_20140620
000903600 980__ $$aI:(DE-588b)4597118-3
000903600 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000903600 980__ $$aUNRESTRICTED
000903600 9801_ $$aFullTexts