001     903600
005     20220221143525.0
024 7 _ |a 10.1103/PhysRevMaterials.5.014401
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 2128/29578
|2 Handle
024 7 _ |a altmetric:97566557
|2 altmetric
024 7 _ |a WOS:000604570700001
|2 WOS
037 _ _ |a FZJ-2021-05254
082 _ _ |a 530
100 1 _ |a Maity, Sumit Ranjan
|0 0000-0002-8168-8024
|b 0
|e Corresponding author
245 _ _ |a Interdependent scaling of long-range oxygen and magnetic ordering in nonstoichiometric Nd$_2$NiO$_{4.10}$
260 _ _ |a College Park, MD
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645448049_27835
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hole doping in Nd2NiO4.00 can be achieved either by substituting the trivalent Nd atoms by bivalent alkaline-earth metals or by oxygen doping, yielding Nd2NiO4+δ. While the alkaline-earth-metal atoms are statistically distributed on the rare-earth sites, the extra oxygen atoms in the interstitial lattice remain mobile down to ambient temperature and allow complex ordering scenarios depending on δ and T. Thereby the oxygen ordering, usually setting in far above room temperature, adds an additional degree of freedom on top of charge, spin, and orbital ordering, which appear at much lower temperatures. In this study, we investigated the interplay between oxygen and spin ordering for a low oxygen doping concentration, i.e., Nd2NiO4.10. Although the extra oxygen doping level remains rather modest with only 1 out of 20 possible interstitial tetrahedral lattice sites occupied, we observed by single-crystal neutron diffraction the presence of a complex three-dimensional (3D) modulated structure related to oxygen ordering already at ambient, the modulation vectors being ±2/13a*±3/13b*, ±3/13b*±2/13b*, and ±1/5a*±1/2c*, and satellite reflections up to fourth order. Temperature-dependent neutron-diffraction studies indicate the coexistence of oxygen and magnetic ordering below TN≃48 K, the wave vector of the Ni sublattice being k=(100). In addition, magnetic satellite reflections adapt exactly the same modulation vectors as found for the oxygen ordering, evidencing a unique coexistence of 3D modulated ordering for spin and oxygen ordering in Nd2NiO4.10. Temperature-dependent measurements of magnetic intensities suggest two magnetic phase transitions below 48 and 20 K, indicating two distinct onsets of magnetic ordering for the Ni and Nd sublattices, respectively.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Crystallography
|0 V:(DE-MLZ)SciArea-240
|2 V:(DE-HGF)
|x 0
650 2 7 |a Chemistry
|0 V:(DE-MLZ)SciArea-110
|2 V:(DE-HGF)
|x 1
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 2
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e HEiDi: Single crystal diffractometer on hot source
|f SR9b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)HEIDI-20140101
|5 EXP:(DE-MLZ)HEIDI-20140101
|6 EXP:(DE-MLZ)SR9b-20140101
|x 0
700 1 _ |a Ceretti, Monica
|0 0000-0001-9704-8251
|b 1
700 1 _ |a Keller, Lukas
|0 0000-0002-8492-4117
|b 2
700 1 _ |a Schefer, Jürg
|0 0000-0002-3461-4786
|b 3
700 1 _ |a Meven, Martin
|0 P:(DE-Juel1)164297
|b 4
700 1 _ |a Pomjakushina, Ekaterina
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paulus, Werner
|0 0000-0001-6472-8162
|b 6
773 _ _ |a 10.1103/PhysRevMaterials.5.014401
|g Vol. 5, no. 1, p. 014401
|0 PERI:(DE-600)2898355-5
|n 1
|p 014401
|t Physical review materials
|v 5
|y 2021
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/903600/files/PhysRevMaterials.5.014401.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903600
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164297
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)164297
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21