000903602 001__ 903602
000903602 005__ 20220221143525.0
000903602 0247_ $$2doi$$a10.1021/acsami.0c16016
000903602 0247_ $$2ISSN$$a1944-8244
000903602 0247_ $$2ISSN$$a1944-8252
000903602 0247_ $$2Handle$$a2128/29580
000903602 0247_ $$2altmetric$$aaltmetric:96807762
000903602 0247_ $$2pmid$$a33372519
000903602 0247_ $$2WOS$$aWOS:000611066000030
000903602 037__ $$aFZJ-2021-05256
000903602 082__ $$a600
000903602 1001_ $$00000-0003-0996-3930$$aRedhammer, Günther J.$$b0$$eCorresponding author
000903602 245__ $$aWet-Environment-Induced Structural Alterations in Single- and Polycrystalline LLZTO Solid Electrolytes Studied by Diffraction Techniques
000903602 260__ $$aWashington, DC$$bSoc.$$c2021
000903602 3367_ $$2DRIVER$$aarticle
000903602 3367_ $$2DataCite$$aOutput Types/Journal article
000903602 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645444593_27836
000903602 3367_ $$2BibTeX$$aARTICLE
000903602 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903602 3367_ $$00$$2EndNote$$aJournal Article
000903602 520__ $$aLi7La3Zr2O12 (LLZO) is one of the potential candidates for Li metal-based solid-state batteries owing to its high Li+ conductivity (≈10$^{–3}$ S cm$^{–1}$) at room temperature and large electrochemical stability window. However, LLZO undergoes protonation under the influence of moisture-forming Li2CO3 layers, thereby affecting its structural and transport properties. Therefore, a detailed understanding on the impact of the exchange of H+ on Li+ sites on structural alteration and kinetics under the influence of wet environments is of great importance. The present study focuses on the Li+/H+ exchange in single-crystal and polycrystal Li6La3ZrTaO12 (LLZTO) garnets prepared using the Czochralski method and solid-state reactions subjected to weathering in air, aqueous solutions at room temperature, and in aqueous solution at 363 K using X-ray diffraction (XRD) and neutron diffraction (ND) techniques. Based on 36 single-crystal diffraction and 88 powder diffraction measurements, we found that LLZTO crystallizes with space group (SG) Ia3̅d with Li located in 96h (Li(2)) and 24d (Li(1)) sites, whereas the latter one is displaced toward the general position 96h forming shorter Li(1)–Li(2) jump distances. The degradation in air, wet air, water, and acetic acid leads to a Li+/H+ exchange that preferably takes place at the 24d site, which is in contrast to previous reports. Higher Li+/H+ was observed for LLZTO aged in water at 363 K that reduced the symmetry to SG I4̅3d from SG Ia3̅d. This symmetry reduction was found to be related to the site occupation behavior of Li at the tetrahedral 12a site in SG I4̅3d. Moreover, Li+ is exchanged by H+ preferably at the 48e site (equivalent to 96h site). We also found that the equilibrium H+ concentrations in all media tested remains very similar, which is related to the H+ diffusion in the LLZTO-controlled exchange process. Only the increase in temperature led to a significant increase in the exchange capacity as well as in the Li+/H+ exchange rate. Overall, we found that the exchange rate, exchange capacity, site occupation behavior of Li+ and H+, as well as the structural stability of LLZTO, strongly depend on the composition. These findings suggest that measurements on a single LLZTO variant sample do not lead to a general conclusion for all garnets to guide the field toward better materials. In contrast, each composition has to be analyzed exclusively to understand the interplay of composition, structure, and exchange kinetic properties.
000903602 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903602 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903602 65027 $$0V:(DE-MLZ)SciArea-240$$2V:(DE-HGF)$$aCrystallography$$x0
000903602 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x1
000903602 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000903602 693__ $$0EXP:(DE-MLZ)HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)HEIDI-20140101$$6EXP:(DE-MLZ)SR9b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eHEiDi: Single crystal diffractometer on hot source$$fSR9b$$x0
000903602 7001_ $$0P:(DE-HGF)0$$aBadami, Pavan$$b1
000903602 7001_ $$0P:(DE-Juel1)164297$$aMeven, Martin$$b2
000903602 7001_ $$0P:(DE-HGF)0$$aGanschow, Steffen$$b3
000903602 7001_ $$0P:(DE-HGF)0$$aBerendts, Stefan$$b4
000903602 7001_ $$0P:(DE-HGF)0$$aTippelt, Gerold$$b5
000903602 7001_ $$00000-0002-2074-941X$$aRettenwander, Daniel$$b6
000903602 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c16016$$gVol. 13, no. 1, p. 350 - 359$$n1$$p350 - 359$$tACS applied materials & interfaces$$v13$$x1944-8244$$y2021
000903602 8564_ $$uhttps://juser.fz-juelich.de/record/903602/files/Redhammer_CM_2020-PB_6_30_20_DR_3-1_2_draft.docx$$yPublished on 2020-11-19. Available in OpenAccess from 2021-11-19.
000903602 8564_ $$uhttps://juser.fz-juelich.de/record/903602/files/acsami.0c16016.pdf$$yRestricted
000903602 909CO $$ooai:juser.fz-juelich.de:903602$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$pdnbdelivery$$popenaire
000903602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164297$$aForschungszentrum Jülich$$b2$$kFZJ
000903602 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164297$$aRWTH Aachen$$b2$$kRWTH
000903602 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903602 9141_ $$y2021
000903602 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903602 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903602 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903602 920__ $$lyes
000903602 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903602 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000903602 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903602 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000903602 980__ $$ajournal
000903602 980__ $$aVDB
000903602 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903602 980__ $$aI:(DE-588b)4597118-3
000903602 980__ $$aI:(DE-82)080009_20140620
000903602 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000903602 980__ $$aUNRESTRICTED
000903602 9801_ $$aFullTexts