000903614 001__ 903614
000903614 005__ 20250822121434.0
000903614 0247_ $$2doi$$a10.5281/ZENODO.5745505
000903614 0247_ $$2altmetric$$aaltmetric:117880295
000903614 037__ $$aFZJ-2021-05268
000903614 041__ $$aEnglish
000903614 1001_ $$0P:(DE-HGF)0$$aGarcia de Gonzalo, Simon$$b0
000903614 1112_ $$aSupercomputing Conference 2021$$conline$$d2021-11-14 - 2021-11-14$$gSC21
000903614 245__ $$aEfficient Distributed GPU Programming for Exascale
000903614 260__ $$c2021
000903614 3367_ $$2DRIVER$$alecture
000903614 3367_ $$031$$2EndNote$$aGeneric
000903614 3367_ $$2BibTeX$$aMISC
000903614 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1639660672_30760$$xAfter Call
000903614 3367_ $$2ORCID$$aLECTURE_SPEECH
000903614 3367_ $$2DataCite$$aText
000903614 500__ $$aTutorial at SC21 Conference, consisting of lectures and hands-on exercises.
000903614 520__ $$aOver the past years, GPUs became ubiquitous in HPC installations around the world. Today, they provide the majority of performance of some of the largest supercomputers (e.g. Summit, Sierra, JUWELS Booster). This trend continues in upcoming pre-exascale and exascale systems (LUMI, Leonardo; Frontier): GPUs are chosen as the core computing devices to enter this next era of HPC.To take advantage of future GPU-accelerated systems with tens of thousands of devices, application developers need to have the proper skills and tools to understand, manage, and optimize distributed GPU applications.</p> <p>In this tutorial, participants will learn techniques to efficiently program large-scale multi-GPU systems. While programming multiple GPUs with MPI is explained in detail, also advanced techniques and models (NCCL, NVSHMEM, &hellip;) are presented. Tools for analysis are used to motivate implementation of performance optimizations. The tutorial combines lectures and hands-on exercises, using Europe's fastest supercomputer, JUWELS Booster with NVIDIA A100 GPUs.
000903614 536__ $$0G:(DE-HGF)POF4-5121$$a5121 - Supercomputing & Big Data Facilities (POF4-512)$$cPOF4-512$$fPOF IV$$x0
000903614 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
000903614 536__ $$0G:(DE-Juel-1)ATML-X-DEV$$aATML-X-DEV - ATML Accelerating Devices (ATML-X-DEV)$$cATML-X-DEV$$x2
000903614 588__ $$aDataset connected to DataCite
000903614 7001_ $$0P:(DE-Juel1)180799$$aHrywniak, Markus$$b1$$ufzj
000903614 7001_ $$0P:(DE-Juel1)137023$$aKraus, Jiri$$b2$$ufzj
000903614 7001_ $$0P:(DE-Juel1)188270$$aOden, Lena$$b3$$ufzj
000903614 7001_ $$0P:(DE-Juel1)145478$$aHerten, Andreas$$b4$$eCorresponding author$$ufzj
000903614 773__ $$a10.5281/ZENODO.5745505
000903614 909CO $$ooai:juser.fz-juelich.de:903614$$pVDB
000903614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180799$$aForschungszentrum Jülich$$b1$$kFZJ
000903614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137023$$aForschungszentrum Jülich$$b2$$kFZJ
000903614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188270$$aForschungszentrum Jülich$$b3$$kFZJ
000903614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145478$$aForschungszentrum Jülich$$b4$$kFZJ
000903614 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5121$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x0
000903614 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
000903614 9141_ $$y2021
000903614 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000903614 980__ $$alecture
000903614 980__ $$aVDB
000903614 980__ $$aI:(DE-Juel1)JSC-20090406
000903614 980__ $$aUNRESTRICTED