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Outline
Goals of this session

Use compute-sanitizer to detect invalid memory accesses
Use cuda-gdb to debug a CUDA program
Gain performance insight with NVIDIA Nsight Systems/Compute, nvprof
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Debugging



compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck

Has sub-tools, via compute-sanitizer --tool NAME:
memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code

ok

-G Debug info for
device code

slow

-lineinfo Line number for
device code

ok
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Example

Launch: compute-sanitizer PROGRAM

$ srun --pty compute-sanitizer ./set_vector
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 4 bytes
========= at 0xc0 in
/p/home/jusers/hrywniak1/juwels/GPU-Course/task1/set_vector.cu:20:set(int,float*,float)

========= by thread (0,0,0) in block (0,0,0)
========= Address 0x2afe49a02000 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
[...]
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Task 1
Use compute-sanitizer to identify error

Location of code: 2-Tools/exercises/tasks/task1
Steps (see also Instructions.ipynb)

Fix set-vector.cu!
Use compute-sanitizer to fix error in set-vector.cu
compute-sanitizer should run without errors!
Build: make
Run: make run / make memcheck

TASK 1
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cuda-gdb
Symbolic debugger

Powerful symbolic debugger for
CUDA code
Built on top of gdb
Full usage: own course needed

https://docs.nvidia.com/
cuda/cuda-gdb/

cuda-gdb 101

run Starts application, give arguments with set
args 1 2 …

break L Create breakpoint
L: function name, line LN, or FILE:LN

print i Print content of i
set variable i = 10 Set i to 10
info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N
set cuda api_failures stop Break execution on CUDA

errors

continue Continue running cheat sheet
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cuda-gdb
Example

Launch: cuda-gdb app→ run
Set breakpoint with break func or break L or break file.c:L

$ cuda-gdb gpu_print
NVIDIA (R) CUDA Debugger, 9.1 release
Portions Copyright (C) 2007-2017 NVIDIA Corporation
GNU gdb (GDB) 7.12
For help, type "help".
Reading symbols from gpu_print...done.
(cuda-gdb) run
Starting program: /path/to/gpu_print
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
[New Thread 0x10000755f190 (LWP 155595)]
blockIdx.x = 0, threadIdx.x = 0, i = 0
blockIdx.x = 0, threadIdx.x = 1, i = 0
blockIdx.x = 0, threadIdx.x = 2, i = 0
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cuda-gdb
A typical debug session

This is the one sequence to remember, if nothing else.

$ cuda-gdb --args ./my-exe args arg0 arg1 # The same works on pure CPU using plain gdb.
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Think of gdb as a shell for debugging with some extensions:

(gdb) bt # same as above - can abbreviate every command as long as unambiguous
(gdb) c # continue - see next slides
(gdb) help b # get help on any topic, abbreviation or command - try it out!
(gdb) apropos cuda.*stop # regex search through help topics
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Breakpoints

Interrupt execution when a certain (source) location is reached.

(gdb) break foo # break at function/kernel/template
(gdb) break file:line # break at line
(gdb) list file.cpp:5 # forgot where - show source code!

Conditional breakpoints

(gdb) break foo if i == 42 && threadIdx.x == 23
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At The Breakpoint
When execution is halted the program state can be inspected.

Getting information

(gdb) backtrace # show stack of functions to here
(gdb) list # show source code context

Showing variables andmemory

(gdb) print bar # print value of variable
(gdb) print arr[0]@4 # print first 4 values in array

Also, the state can bewritten

(gdb) set variable bar = 42 # set a variable
(gdb) call foo(23) # call function inside debugee
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Leaving the Breakpoint

Resuming execution

(gdb) continue # resume until next breakpoint (same if in loop)
(gdb) step # resume until next line
(gdb) next # same, but do not follow calls
(gdb) # here: 'next' - repeats last command

Deleting a breakpoint

(gdb) delete <id> # id is returned when setting a breakpoint

Member of the Helmholtz Association April 2021 Slide 11 25



Leaving the Breakpoint

Resuming execution

(gdb) continue # resume until next breakpoint (same if in loop)
(gdb) step # resume until next line
(gdb) next # same, but do not follow calls
(gdb) # here: 'next' - repeats last command

Deleting a breakpoint

(gdb) delete <id> # id is returned when setting a breakpoint

Member of the Helmholtz Association April 2021 Slide 11 25



GPU-specifics
Information

So far, most techniques have been general. Now, we start delving into the specifics of
cuda-gdb. Note: Most need -G to be useful.
Remember the GPU execution model of

kernels, grids, blocks, threads (logically)
devices, SMs, warps, lanes (physically).

You can retrieve detailed information about any of these when stopped on a kernel:

(cuda-gdb) info cuda kernels # what is currently running
Kernel Parent Dev Grid Status SMs Mask GridDim BlockDim Invocation

* 0 - 0 3 Active 0xffffffff (57,1,1) (128,1,1) initialize_boundaries()
(cuda-gdb) i cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line

Kernel 0
* (0,0,0) (0,0,0) (56,0,0) (127,0,0) 7296 0x0000555555da6eb0 jacobi.cu 93
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GPU-specifics
Focus

cuda-gdb is working with a subset of threads called the ‘focus’.

(cuda-gdb) cuda device sm warp lane block thread # Show current focus
block (0,0,0), thread (0,0,0), device 0, sm 0, warp 3, lane 0
(cuda-gdb) # Change focus
(cuda-gdb) cuda device <d> sm <s> warp <w> lane <l> block <b> thread <t>
(cuda-gdb) # in both cases, you can leave out items

Working with the focus is extremely helpful when only some threads produce an error, e.g.
out-of-bounds access.
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IDE integration

Why use an integrated development environment (IDE)?
Source code editor with CUDA C / C++ highlighting
Project / file management with integration of version control
Build system
Graphical interface for debugging heterogeneous applications

Plugins for the Eclipse platform. Recommended:
https://github.com/NVIDIA/nsight-training
→ https://developer.nvidia.com/nsight-eclipse-edition/

OnWindows: Nsight Visual Studio Edition
→ https://developer.nvidia.com/nsight-visual-studio-edition/

Up-and-coming: Nsight Visual Studio Code Edition
→ https://developer.nvidia.com/nsight-visual-studio-code-edition/
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Task 2
Debug with cuda-gdb

Location of code: 2-Tools/exercises/tasks/task2
Steps (see also Instructions.ipynb)

Let thread 4 from first block print 42 (instead of 0)
Do not change the source code! Use the variable view.
Build program: make
Debug with cuda-gdb

1 First, start interactive compute session with
eval $JSC_SUBMIT_CMD bash -i

2 and then…
cuda-gdb …start cuda-gdb (see also make debug-cuda-gdb)

(See solutions directory for a solution of issued commands!)

TASK 2
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Profiling



Motivation for Measuring Performance

Improvement possible only if program ismeasured
Don’t trust your gut!

Identify:
Hotspots Which functions take most of the time?

Bottlenecks What are the limiters of performance?
Manual timing possible, but tedious and error-prone
Feasible for small applications, impractical for complex ones

→ Profiler
In-detail insights
No code changes needed!
Easy access to hardware counters (PAPI, CUPTI)
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The Nsight profiler suite
20/20 Nsight

Visual Profiler and nvprof will be deprecated in a future CUDA release
New tools
Nsight Systems System timeline, CPU/GPU sampling & tracing –

https://developer.nvidia.com/nsight-systems
module load Nsight-Systems
nsys (CLI) and nsys-ui (GUI)

Nsight Compute GPU kernel profiler –
https://developer.nvidia.com/nsight-compute

module load Nsight-Compute
ncu (CLI) and ncu-ui (GUI)
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Application Timeline
Getting an overview through Nsight Systems

Get the necessary modules on JUWELS

module load GCC Nsight-Systems Nsight-Compute

Record the timeline
nsys profile -o scale_report ./scale_vector_um

Default set of traces selected (CUDA API, ...), many more options
→ https://docs.nvidia.com/nsight-systems/UserGuide/index.html#

cli-profiling
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Kernel profiling
Analysis with Nsight Compute

Use GUI (also remotely), or run command line:
ncu --set full -k scale -s 0 -c 1 -f -o my_report ./scale_vector_um

Important switches for metrics collection, pre selected sets
Fully customizable, ncu --help. Check --list-metrics and --query-metrics

→ https://docs.nvidia.com/nsight-compute/
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Other Profilers
Because there’s so muchmore

Special measurement registers (performance counters) of GPU exposed to third-party
applications via CUPTI (CUDA Profiling Tools Interface)

→ Enables professional profiling tools for GPU!

PAPI API for measuring performance counters, also GPU
For example: cuda:::device:0:threads_launched

Score-P Measures CPU and GPU profile of program
Prefix nvcc compilation with scorep, set SCOREP_CUDA_ENABLE=yes, run

Cube Displays performance report from Score-P concisely
Vampir Display report form Score-P in timeline view, also multipleMPI ranks
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Score-P
Analysis with Cube
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Task 3
Analyze and profile scale_vector_um

Location of code: 2-Tools/exercises/tasks/task3/
See Instructions.ipynb
Use CLI to gather profile, GUI for viewing (X-forwarding or Xpra, descibed in .ipynb)

Use nsys profile to write scale_vector_um’s timeline to file
Start Nsight Systems (nsys-ui) on the login node; import timeline
Use ncu to collect metric information
Import, analyze in Nsight Compute GUI ncu-ui

Objective: Get to know the tools! What’s the runtime of the kernel?

TASK 3
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Conclusions
What we’ve learned

Debugging
Detect false memory accesses with compute-sanitizer
Debug from console with cuda-gdb

Profiling
Use Nsight Systems/Compute for analysis and optimization
nsys, ncu in console, also for batch jobs
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for your att
ention!

a.herten@fz-juelich.de

mhrywniak@
nvidia.com
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APPENDIX
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Appendix
Glossary
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Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 13, 14, 15, 27

NVIDIA US technology company creating GPUs. 45

CPU Central Processing Unit. 37, 38

GPU Graphics Processing Unit. 37, 38, 39, 45
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