
CUDA TOOLS
TOOLS FOR PROFILING AND DEBUGGING
April 2021 Andreas Herten / Markus Hrywniak Forschungszentrum Jülich / NVIDIA

Member of the Helmholtz Association

Outline
Goals of this session

Use compute-sanitizer to detect invalid memory accesses
Use cuda-gdb to debug a CUDA program
Gain performance insight with NVIDIA Nsight Systems/Compute, nvprof

Contents
Debugging

compute-sanitizer
Task 1
cuda-gdb
IDE integration

Task 2
Profiling

Nsight Suite
Others
Task 3

Member of the Helmholtz Association April 2021 Slide 1 25

Debugging

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck

Has sub-tools, via compute-sanitizer --tool NAME:
memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code

ok

-G Debug info for
device code

slow

-lineinfo Line number for
device code

ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck
Has sub-tools, via compute-sanitizer --tool NAME:

memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code

ok

-G Debug info for
device code

slow

-lineinfo Line number for
device code

ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck
Has sub-tools, via compute-sanitizer --tool NAME:

memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code

ok

-G Debug info for
device code

slow

-lineinfo Line number for
device code

ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck
Has sub-tools, via compute-sanitizer --tool NAME:

memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code

ok

-G Debug info for
device code

slow

-lineinfo Line number for
device code

ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck
Has sub-tools, via compute-sanitizer --tool NAME:

memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code ok

-G Debug info for
device code slow

-lineinfo Line number for
device code ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

compute-sanitizer
Command-line functional correctness checking suite

Compute Sanitizer is the successor of
cuda-memcheck in CUDA 11
Default: Memory error detector;
similar to Valgrind’s memcheck
Has sub-tools, via compute-sanitizer --tool NAME:

memcheck: Memory access checking (default)
racecheck: Sharedmemory hazard checking
Also: synccheck, initcheck

Remember to compile your programwith line (or debug) information: add -g (host) or
-lineinfo (device).

→ https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Compile options for nvcc

-g Debug info for host
code ok

-G Debug info for
device code slow

-lineinfo Line number for
device code ok

Member of the Helmholtz Association April 2021 Slide 3 25

http://valgrind.org/docs/manual/mc-manual.html
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer

Example

Launch: compute-sanitizer PROGRAM

$ srun --pty compute-sanitizer ./set_vector
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 4 bytes
========= at 0xc0 in
/p/home/jusers/hrywniak1/juwels/GPU-Course/task1/set_vector.cu:20:set(int,float*,float)

========= by thread (0,0,0) in block (0,0,0)
========= Address 0x2afe49a02000 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
[...]

Member of the Helmholtz Association April 2021 Slide 4 25

Example

Launch: compute-sanitizer PROGRAM

$ srun --pty compute-sanitizer ./set_vector
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 4 bytes
========= at 0xc0 in
/p/home/jusers/hrywniak1/juwels/GPU-Course/task1/set_vector.cu:20:set(int,float*,float)

========= by thread (0,0,0) in block (0,0,0)
========= Address 0x2afe49a02000 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
[...]

Member of the Helmholtz Association April 2021 Slide 4 25

Task 1
Use compute-sanitizer to identify error

Location of code: 2-Tools/exercises/tasks/task1
Steps (see also Instructions.ipynb)

Fix set-vector.cu!
Use compute-sanitizer to fix error in set-vector.cu
compute-sanitizer should run without errors!
Build: make
Run: make run / make memcheck

TASK 1

Member of the Helmholtz Association April 2021 Slide 5 25

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for
CUDA code
Built on top of gdb
Full usage: own course needed

https://docs.nvidia.com/
cuda/cuda-gdb/

cuda-gdb 101

run Starts application, give arguments with set
args 1 2 …

break L Create breakpoint
L: function name, line LN, or FILE:LN

print i Print content of i
set variable i = 10 Set i to 10
info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N
set cuda api_failures stop Break execution on CUDA

errors

continue Continue running cheat sheet

Member of the Helmholtz Association April 2021 Slide 6 25

https://www.gnu.org/software/gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for
CUDA code
Built on top of gdb
Full usage: own course needed

https://docs.nvidia.com/
cuda/cuda-gdb/

cuda-gdb 101

run Starts application, give arguments with set
args 1 2 …

break L Create breakpoint
L: function name, line LN, or FILE:LN

print i Print content of i
set variable i = 10 Set i to 10
info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N
set cuda api_failures stop Break execution on CUDA

errors

continue Continue running
→ cheat sheet

Member of the Helmholtz Association April 2021 Slide 6 25

https://www.gnu.org/software/gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

cuda-gdb
Symbolic debugger

Powerful symbolic debugger for
CUDA code
Built on top of gdb
Full usage: own course needed

→ https://docs.nvidia.com/
cuda/cuda-gdb/

cuda-gdb 101

run Starts application, give arguments with set
args 1 2 …

break L Create breakpoint
L: function name, line LN, or FILE:LN

print i Print content of i
set variable i = 10 Set i to 10
info locals Print all currently set variables

info cuda threads Print current thread configuration

cuda thread N Switch context to thread number N
set cuda api_failures stop Break execution on CUDA

errors

continue Continue running
→ cheat sheet

Member of the Helmholtz Association April 2021 Slide 6 25

https://www.gnu.org/software/gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
https://docs.nvidia.com/cuda/cuda-gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

cuda-gdb
Example

Launch: cuda-gdb app→ run
Set breakpoint with break func or break L or break file.c:L

$ cuda-gdb gpu_print
NVIDIA (R) CUDA Debugger, 9.1 release
Portions Copyright (C) 2007-2017 NVIDIA Corporation
GNU gdb (GDB) 7.12
For help, type "help".
Reading symbols from gpu_print...done.
(cuda-gdb) run
Starting program: /path/to/gpu_print
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
[New Thread 0x10000755f190 (LWP 155595)]
blockIdx.x = 0, threadIdx.x = 0, i = 0
blockIdx.x = 0, threadIdx.x = 1, i = 0
blockIdx.x = 0, threadIdx.x = 2, i = 0

Member of the Helmholtz Association April 2021 Slide 7 25

cuda-gdb
A typical debug session

This is the one sequence to remember, if nothing else.

$ cuda-gdb --args ./my-exe args arg0 arg1 # The same works on pure CPU using plain gdb.
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Think of gdb as a shell for debugging with some extensions:

(gdb) bt # same as above - can abbreviate every command as long as unambiguous
(gdb) c # continue - see next slides
(gdb) help b # get help on any topic, abbreviation or command - try it out!
(gdb) apropos cuda.*stop # regex search through help topics

Member of the Helmholtz Association April 2021 Slide 8 25

cuda-gdb
A typical debug session

This is the one sequence to remember, if nothing else.

$ cuda-gdb --args ./my-exe args arg0 arg1 # The same works on pure CPU using plain gdb.
(gdb) run
... something terrible happens ...
(gdb) backtrace # Which function are we in, which functions called us.

Think of gdb as a shell for debugging with some extensions:

(gdb) bt # same as above - can abbreviate every command as long as unambiguous
(gdb) c # continue - see next slides
(gdb) help b # get help on any topic, abbreviation or command - try it out!
(gdb) apropos cuda.*stop # regex search through help topics

Member of the Helmholtz Association April 2021 Slide 8 25

Breakpoints

Interrupt execution when a certain (source) location is reached.

(gdb) break foo # break at function/kernel/template
(gdb) break file:line # break at line
(gdb) list file.cpp:5 # forgot where - show source code!

Conditional breakpoints

(gdb) break foo if i == 42 && threadIdx.x == 23

Member of the Helmholtz Association April 2021 Slide 9 25

At The Breakpoint
When execution is halted the program state can be inspected.

Getting information

(gdb) backtrace # show stack of functions to here
(gdb) list # show source code context

Showing variables andmemory

(gdb) print bar # print value of variable
(gdb) print arr[0]@4 # print first 4 values in array

Also, the state can bewritten

(gdb) set variable bar = 42 # set a variable
(gdb) call foo(23) # call function inside debugee

Member of the Helmholtz Association April 2021 Slide 10 25

At The Breakpoint
When execution is halted the program state can be inspected.

Getting information

(gdb) backtrace # show stack of functions to here
(gdb) list # show source code context

Showing variables andmemory

(gdb) print bar # print value of variable
(gdb) print arr[0]@4 # print first 4 values in array

Also, the state can bewritten

(gdb) set variable bar = 42 # set a variable
(gdb) call foo(23) # call function inside debugee

Member of the Helmholtz Association April 2021 Slide 10 25

At The Breakpoint
When execution is halted the program state can be inspected.

Getting information

(gdb) backtrace # show stack of functions to here
(gdb) list # show source code context

Showing variables andmemory

(gdb) print bar # print value of variable
(gdb) print arr[0]@4 # print first 4 values in array

Also, the state can bewritten

(gdb) set variable bar = 42 # set a variable
(gdb) call foo(23) # call function inside debugee

Member of the Helmholtz Association April 2021 Slide 10 25

Leaving the Breakpoint

Resuming execution

(gdb) continue # resume until next breakpoint (same if in loop)
(gdb) step # resume until next line
(gdb) next # same, but do not follow calls
(gdb) # here: 'next' - repeats last command

Deleting a breakpoint

(gdb) delete <id> # id is returned when setting a breakpoint

Member of the Helmholtz Association April 2021 Slide 11 25

Leaving the Breakpoint

Resuming execution

(gdb) continue # resume until next breakpoint (same if in loop)
(gdb) step # resume until next line
(gdb) next # same, but do not follow calls
(gdb) # here: 'next' - repeats last command

Deleting a breakpoint

(gdb) delete <id> # id is returned when setting a breakpoint

Member of the Helmholtz Association April 2021 Slide 11 25

GPU-specifics
Information

So far, most techniques have been general. Now, we start delving into the specifics of
cuda-gdb. Note: Most need -G to be useful.
Remember the GPU execution model of

kernels, grids, blocks, threads (logically)
devices, SMs, warps, lanes (physically).

You can retrieve detailed information about any of these when stopped on a kernel:

(cuda-gdb) info cuda kernels # what is currently running
Kernel Parent Dev Grid Status SMs Mask GridDim BlockDim Invocation

* 0 - 0 3 Active 0xffffffff (57,1,1) (128,1,1) initialize_boundaries()
(cuda-gdb) i cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line

Kernel 0
* (0,0,0) (0,0,0) (56,0,0) (127,0,0) 7296 0x0000555555da6eb0 jacobi.cu 93

Member of the Helmholtz Association April 2021 Slide 12 25

GPU-specifics
Focus

cuda-gdb is working with a subset of threads called the ‘focus’.

(cuda-gdb) cuda device sm warp lane block thread # Show current focus
block (0,0,0), thread (0,0,0), device 0, sm 0, warp 3, lane 0
(cuda-gdb) # Change focus
(cuda-gdb) cuda device <d> sm <s> warp <w> lane <l> block thread <t>
(cuda-gdb) # in both cases, you can leave out items

Working with the focus is extremely helpful when only some threads produce an error, e.g.
out-of-bounds access.

Member of the Helmholtz Association April 2021 Slide 13 25

IDE integration

Why use an integrated development environment (IDE)?
Source code editor with CUDA C / C++ highlighting
Project / file management with integration of version control
Build system
Graphical interface for debugging heterogeneous applications

Plugins for the Eclipse platform. Recommended:
https://github.com/NVIDIA/nsight-training
→ https://developer.nvidia.com/nsight-eclipse-edition/

OnWindows: Nsight Visual Studio Edition
→ https://developer.nvidia.com/nsight-visual-studio-edition/

Up-and-coming: Nsight Visual Studio Code Edition
→ https://developer.nvidia.com/nsight-visual-studio-code-edition/

Member of the Helmholtz Association April 2021 Slide 14 25

https://eclipse.org/
https://github.com/NVIDIA/nsight-training
https://developer.nvidia.com/nsight-eclipse-edition/
https://developer.nvidia.com/nsight-visual-studio-edition/
https://developer.nvidia.com/nsight-visual-studio-code-edition/

Sc
re
en

sh
ot
sb

y
N
VI
DI
A
fro

m
th
e
w
eb

si
te
so

ft
he

re
sp
ec
tiv

e
to
ol
.

Task 2
Debug with cuda-gdb

Location of code: 2-Tools/exercises/tasks/task2
Steps (see also Instructions.ipynb)

Let thread 4 from first block print 42 (instead of 0)
Do not change the source code! Use the variable view.
Build program: make
Debug with cuda-gdb

1 First, start interactive compute session with
eval $JSC_SUBMIT_CMD bash -i

2 and then…
cuda-gdb …start cuda-gdb (see also make debug-cuda-gdb)

(See solutions directory for a solution of issued commands!)

TASK 2

Member of the Helmholtz Association April 2021 Slide 16 25

Profiling

Motivation for Measuring Performance

Improvement possible only if program ismeasured
Don’t trust your gut!

Identify:
Hotspots Which functions take most of the time?

Bottlenecks What are the limiters of performance?
Manual timing possible, but tedious and error-prone
Feasible for small applications, impractical for complex ones

→ Profiler
In-detail insights
No code changes needed!
Easy access to hardware counters (PAPI, CUPTI)

Member of the Helmholtz Association April 2021 Slide 18 25

The Nsight profiler suite
20/20 Nsight

Visual Profiler and nvprof will be deprecated in a future CUDA release
New tools
Nsight Systems System timeline, CPU/GPU sampling & tracing –

https://developer.nvidia.com/nsight-systems
module load Nsight-Systems
nsys (CLI) and nsys-ui (GUI)

Nsight Compute GPU kernel profiler –
https://developer.nvidia.com/nsight-compute

module load Nsight-Compute
ncu (CLI) and ncu-ui (GUI)

Sc
re
en

sh
ot
sb

y
N
VI
DI
A
fro

m
th
e
w
eb

si
te
so

ft
he

re
sp
ec
tiv

e
to
ol
.

Member of the Helmholtz Association April 2021 Slide 19 25

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

The Nsight profiler suite
20/20 Nsight

Visual Profiler and nvprof will be deprecated in a future CUDA release
New tools
Nsight Systems System timeline, CPU/GPU sampling & tracing –

https://developer.nvidia.com/nsight-systems
module load Nsight-Systems
nsys (CLI) and nsys-ui (GUI)

Nsight Compute GPU kernel profiler –
https://developer.nvidia.com/nsight-compute

module load Nsight-Compute
ncu (CLI) and ncu-ui (GUI)

Sc
re
en

sh
ot
sb

y
N
VI
DI
A
fro

m
th
e
w
eb

si
te
so

ft
he

re
sp
ec
tiv

e
to
ol
.

Member of the Helmholtz Association April 2021 Slide 19 25

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

The Nsight profiler suite
20/20 Nsight

Visual Profiler and nvprof will be deprecated in a future CUDA release
New tools
Nsight Systems System timeline, CPU/GPU sampling & tracing –

https://developer.nvidia.com/nsight-systems
module load Nsight-Systems
nsys (CLI) and nsys-ui (GUI)

Nsight Compute GPU kernel profiler –
https://developer.nvidia.com/nsight-compute

module load Nsight-Compute
ncu (CLI) and ncu-ui (GUI)

Sc
re
en

sh
ot
sb

y
N
VI
DI
A
fro

m
th
e
w
eb

si
te
so

ft
he

re
sp
ec
tiv

e
to
ol
.

Member of the Helmholtz Association April 2021 Slide 19 25

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute

Application Timeline
Getting an overview through Nsight Systems

Get the necessary modules on JUWELS

module load GCC Nsight-Systems Nsight-Compute

Record the timeline
nsys profile -o scale_report ./scale_vector_um

Default set of traces selected (CUDA API, ...), many more options
→ https://docs.nvidia.com/nsight-systems/UserGuide/index.html#

cli-profiling

Member of the Helmholtz Association April 2021 Slide 20 25

https://docs.nvidia.com/nsight-systems/UserGuide/index.html#cli-profiling
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#cli-profiling

Kernel profiling
Analysis with Nsight Compute

Use GUI (also remotely), or run command line:
ncu --set full -k scale -s 0 -c 1 -f -o my_report ./scale_vector_um

Important switches for metrics collection, pre selected sets
Fully customizable, ncu --help. Check --list-metrics and --query-metrics

→ https://docs.nvidia.com/nsight-compute/

Member of the Helmholtz Association April 2021 Slide 21 25

https://docs.nvidia.com/nsight-compute/

Other Profilers
Because there’s so muchmore

Special measurement registers (performance counters) of GPU exposed to third-party
applications via CUPTI (CUDA Profiling Tools Interface)

→ Enables professional profiling tools for GPU!

PAPI API for measuring performance counters, also GPU
For example: cuda:::device:0:threads_launched

Score-P Measures CPU and GPU profile of program
Prefix nvcc compilation with scorep, set SCOREP_CUDA_ENABLE=yes, run

Cube Displays performance report from Score-P concisely
Vampir Display report form Score-P in timeline view, also multipleMPI ranks

Member of the Helmholtz Association April 2021 Slide 22 25

Other Profilers
Because there’s so muchmore

Special measurement registers (performance counters) of GPU exposed to third-party
applications via CUPTI (CUDA Profiling Tools Interface)

→ Enables professional profiling tools for GPU!

PAPI API for measuring performance counters, also GPU
For example: cuda:::device:0:threads_launched

Score-P Measures CPU and GPU profile of program
Prefix nvcc compilation with scorep, set SCOREP_CUDA_ENABLE=yes, run

Cube Displays performance report from Score-P concisely
Vampir Display report form Score-P in timeline view, also multipleMPI ranks

Member of the Helmholtz Association April 2021 Slide 22 25

Score-P
Analysis with Cube

Ac
tu
al
ly
,n

o
G
PU

in
fo
rm

at
io
n
di
sp
la
ye
d
he

re
…

Member of the Helmholtz Association April 2021 Slide 23 25

Task 3
Analyze and profile scale_vector_um

Location of code: 2-Tools/exercises/tasks/task3/
See Instructions.ipynb
Use CLI to gather profile, GUI for viewing (X-forwarding or Xpra, descibed in .ipynb)

Use nsys profile to write scale_vector_um’s timeline to file
Start Nsight Systems (nsys-ui) on the login node; import timeline
Use ncu to collect metric information
Import, analyze in Nsight Compute GUI ncu-ui

Objective: Get to know the tools! What’s the runtime of the kernel?

TASK 3

Member of the Helmholtz Association April 2021 Slide 24 25

Conclusions
What we’ve learned

Debugging
Detect false memory accesses with compute-sanitizer
Debug from console with cuda-gdb

Profiling
Use Nsight Systems/Compute for analysis and optimization
nsys, ncu in console, also for batch jobs

Member of the Helmholtz Association April 2021 Slide 25 25

Conclusions
What we’ve learned

Debugging
Detect false memory accesses with compute-sanitizer
Debug from console with cuda-gdb

Profiling
Use Nsight Systems/Compute for analysis and optimization
nsys, ncu in console, also for batch jobs Thank you

for your att
ention!

a.herten@fz-juelich.de

mhrywniak@
nvidia.com

Member of the Helmholtz Association April 2021 Slide 25 25

mailto:a.herten@fz-juelich.de
mailto:mhrywniak@nvidia.com

APPENDIX

Member of the Helmholtz Association April 2021 Slide 1 4

Appendix
Glossary

Member of the Helmholtz Association April 2021 Slide 2 4

Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 2, 13, 14, 15, 27

NVIDIA US technology company creating GPUs. 45

CPU Central Processing Unit. 37, 38

GPU Graphics Processing Unit. 37, 38, 39, 45

Member of the Helmholtz Association April 2021 Slide 3 4

References: Images, Graphics I

Member of the Helmholtz Association April 2021 Slide 4 4

	Outline
	Debugging
	compute-sanitizer
	Task 1
	cuda-gdb
	IDE integration
	Task 2

	Profiling
	Nsight Suite
	Others
	Task 3

	Appendix
	Appendix
	Glossary

	Glossary
	Acronyms

