
GPU PROGRAMMING WITH CUDA
Matrix multiplication
April 27, 2021 Kaveh Haghighi Mood, Jochen Kreutz JSC

Member of the Helmholtz Association

CUDA MATRIX MULTIPLICATION
Distribution of work

A C

B

y

x

Crow ,col =

N
∑

i=1

Arow ,i ∗ Bi,col

Each thread computes one

element of the reuslt matrix C

n * n threads will be needed

(for square matrix C of size n)

Thread indexing corresponds

to 2d indexing of matrices

Thread (x,y) will compute result

element C(x,y) using row y of A

and column x of B

Member of the Helmholtz Association April 27, 2021 Slide 1 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

Thread Block

First naive idea:

use one big thread block to

cover all result elements

Thread blocks are limited in

size, thus we need several

thread blocks to cover the full

matrix C

In addition, using only one

thread block will decrease

performance (due to reduced

device occupancy)

Member of the Helmholtz Association April 27, 2021 Slide 2 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

TB (0, 0) TB (1, 0) TB (k-1, 0)

TB (0, 1) TB (1, 1) TB (k-1, 1)

TB (0, k-1) TB (1, k-1) TB (k-1, k-1)

.

.

.

...

...

...

Thread (0, 0) Thread (m-1, 0)

Thread (m - 1, m - 1)Thread (0, m - 1)

Cover result matrix C of size

n x n by using a 2d kernel

execution grid with k * k thread

blocks (TB)

Use 2d thread blocks with fixed

block size m

k = n / m (n divisible by m)

k = n / m + 1 (n not divisible by

m)

Member of the Helmholtz Association April 27, 2021 Slide 3 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

.

.

.

k = n / m + 1 (n not divisible

by m)

All thread blocks have the

same size

Not possible to create ”partial

blocks”

To take care that some threads

might not have to do any work

(avoid out ouf bound memory

access !)

Member of the Helmholtz Association April 27, 2021 Slide 4 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

y

x

Thread Block (x, y)

Thread (0, 0)

Thread (x * m ,

 y * m)

Thread (1, 0)

Thread (x * m + 1,

 y * m)

Thread (m - 1, 0)

Thread (x * m + m - 1,

 y * m)

Thread (m - 1, 0)

Thread (x * m ,

 y * m + m - 1)

Thread (m - 1, 0)

Thread (x * m + 1,

 y * m + m - 1)

Thread (m - 1, m - 1)

Thread (x * m + m - 1,

 y * m + m - 1)

Threads can be addressed via

local index (block internal) and

global index (full grid)

Use available keywords in your
kernel for targetting certain
threads:

blockIdx.[x, y, z]

blockDim.[x, y, z]

threadIdx.[x, y, z]

Member of the Helmholtz Association April 27, 2021 Slide 5 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

dim3 blockDim

dim3 blockDim { size t blockDimX, size t blockDimY, size t blockDimZ }

On JUWELS Booster (Nvidia A100):

Max. dim. of a block: 1024 x 1024 x 64

Max. number of threads per block: 1024

Example

// Create 3d thread block with 512 threads

dim3 blockDim (16, 16, 2);

Member of the Helmholtz Association April 27, 2021 Slide 6 24

CUDA MATRIX MULTIPLICATION
Execution grid layout

dim3 gridDim

dim3 gridDim { size t gridDimX, size t gridDimY, size t gridDimZ }

On JUWELS Booster (Nvidia A100):

Max. dim. of a grid: 2147483647 x 65535 x 65535

Use cudaGetDeviceProperties() to get device properties

Example

// problem dimension: nx * ny = 1000 * 1000

dim3 blockDim (16, 16) // don't need to write z = 1

int gx = (nx % blockDim.x == 0) ? nx / blockDim.x : nx / blockDim.x + 1

int gy = (ny % blockDim.y == 0) ? ny / blockDim.y : ny / blockDim.y + 1

dim3 gridDim (gx, gy); // don't need to write z = 1
Member of the Helmholtz Association April 27, 2021 Slide 7 24

CUDA MATRIX MULTIPLICATION
Calling the kernel

Define dimensions of thread blocks

dim3 blockDim { size t blockDimX, size t blockDimY, size t blockDimZ }

Define dimensions of execution grid

dim3 gridDim { size t gridDimX, size t gridDimY, size t gridDimZ }

Launch the kernel

kernel name <<< dim3 gridDim, dim3 blockDim >>> ([kernel args])

Member of the Helmholtz Association April 27, 2021 Slide 8 24

CUDA MATRIX MULTIPLICATION
Cuda kernel

Example

__global__ void mm_kernel(float* A, float* B, float* C, int n) {

int col = blockIdx.x * blockDim.x + threadIdx.x;

int row = blockIdx.y * blockDim.y + threadIdx.y;

if (row < n && col < n) {

for (int i = 0; i < n; ++i) {

C[row*n + col] += A[row*n + i] * B[i*n + col];

}

}

}

mm_kernel <<< dimGrid, dimBlock >>> (d_a, d_b, d_c, n);

Member of the Helmholtz Association April 27, 2021 Slide 9 24

EXERCISE
Simple matrix multiplication with Cuda

Location:

.../exercises/tasks/Cuda MM simple/Instructions.ipynb

Member of the Helmholtz Association April 27, 2021 Slide 10 24

PERFORMANCE CONSIDERATIONS
Measured numbers

JUWELS Cluster: 1 x V100 (theoretical peak: 7 TFlops DP)

JUWELS Booster: 1 x A100 (theoretical peak: 9.7 TFlops DP, 19.5 with TC)

matrix size 64 1024 10240 64 1024 10240

JW Cluster [gflops] JW Booster [gflops]

with cvalue 1.2 319 1146 1.1 286.2 1587.1

direct write 1.02 196 391 0.9 198.3 562.2

Member of the Helmholtz Association April 27, 2021 Slide 11 24

PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

get useful hints from profiler

helps to identify hotspots and potential performance issues

get an overview timeline using Nsight Systems

can analyse kernels individually using Nsight Compute

indicates very low compute utilization

dgemm kernel is memory-bound (GPU cores spend lots of time waiting for data)

Member of the Helmholtz Association April 27, 2021 Slide 12 24

PERFORMANCE CONSIDERATIONS
GPU memory layout (schematics)

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory

matrix array C located in global

memory

cvalue located in registers on

SM: faster write operations

Member of the Helmholtz Association April 27, 2021 Slide 13 24

PERFORMANCE CONSIDERATIONS
Profiler hints for simple matrix multiplication

Using cvalue reduces the access to the global memory

Member of the Helmholtz Association April 27, 2021 Slide 14 24

PERFORMANCE CONSIDERATIONS
GPU memory layout (schematics)

. . .

Streaming Multiprocessor

L1/Shared (64 KiB)

Block 0

. . .thread 0

Registers

thread 1

Registers

Streaming Multiprocessor

L1/Shared (64 KiB)

Block x

. . .thread 0

Registers

thread 1

Registers

L2 Cache

Global Memory

what about using Shared Memory ?!

matrix array C located in global

memory

cvalue located in registers on

SM: faster write operations

Member of the Helmholtz Association April 27, 2021 Slide 15 24

SHARED MEMORY
How to use inside your kernels

Allocate shared memory

// allocate vector in shared memory

shared float[size];

// can also define multi-dimensional arrays: BLOCK SIZE is length (and width) of a thread

block here

shared float Msub[BLOCK SIZE][BLOCK SIZE];

Copy data into shared memory

// fetch data from global to shared memory

Msub[threadIdx.y][threadIdx.x] = M[TidY * width + TidX];

Remember: only shared between threads within the same thread block !

Member of the Helmholtz Association April 27, 2021 Slide 16 24

BLOCK MATRIX MULTIPLICATION
Idea

input matrix A result matrix C

input matrix B

Split computation of result element into parts

(assume N is even here)

Crow ,col =

N
∑

i=1

Arow ,i ∗ Bi,col

Member of the Helmholtz Association April 27, 2021 Slide 17 24

BLOCK MATRIX MULTIPLICATION
Idea

input matrix A result matrix C

input matrix B

Split computation of result element into parts

(assume N is even here)

Crow ,col =

N
∑

i=1

Arow ,i ∗ Bi,col

=

N

2
∑

i=1

Arow ,i ∗ Bi,col

Member of the Helmholtz Association April 27, 2021 Slide 17 24

BLOCK MATRIX MULTIPLICATION
Idea

input matrix A result matrix C

input matrix B

Split computation of result element into parts

(assume N is even here)

Crow ,col =

N
∑

i=1

Arow ,i ∗ Bi,col

=

N

2
∑

i=1

Arow ,i ∗ Bi,col

+

N
∑

i=
N

2
+1

Arow ,i ∗ Bi,col

Member of the Helmholtz Association April 27, 2021 Slide 17 24

BLOCK MATRIX MULTIPLICATION
Idea

input matrix A result matrix C

input matrix B

Crow ,col =

N

2
∑

i=1

Arow ,i∗Bi,col+

N
∑

i=
N

2
+1

Arow ,i∗Bi,col

consider all result elements within the same

block in C:

C11 = A11 ∗ B11 + A12 ∗ B21

C12 = A11 ∗ B12 + A12 ∗ B22

C21 = A21 ∗ B11 + A22 ∗ B21

C22 = A21 ∗ B12 + A22 ∗ B21

Member of the Helmholtz Association April 27, 2021 Slide 17 24

BLOCK MATRIX MULTIPLICATION
Example

C = A ∗ B C =

(

C11 C12

C21 C22

)

A =









(

1 2

4 1

) (

3 4

2 3

)

(

3 4

2 3

) (

1 2

4 1

)









B =









(

−9 11

1 −9

) (

1 1

11 1

)

(

1 1

11 1

) (

−9 11

1 −9

)









∗ 1
40

C11 =

(

1 2

4 1

)

∗
1

40

(

−9 11

1 −9

)

+

(

3 4

2 3

)

∗
1

40

(

1 1

11 1

)

(1)

Member of the Helmholtz Association April 27, 2021 Slide 18 24

BLOCK MATRIX MULTIPLICATION
Example

C = A ∗ B C =

(

C11 C12

C21 C22

)

A =









(

1 2

4 1

) (

3 4

2 3

)

(

3 4

2 3

) (

1 2

4 1

)









B =









(

−9 11

1 −9

) (

1 1

11 1

)

(

1 1

11 1

) (

−9 11

1 −9

)









∗ 1
40

=
1

40
∗

(

−7 −7

−35 35

)

+
1

40
∗

(

47 7

35 5

)

=
1

40
∗

(

40 0

0 40

)

=

(

1 0

0 1

)

do C12, C21 and C22 the same way

Member of the Helmholtz Association April 27, 2021 Slide 18 24

BLOCK MATRIX MULTIPLICATION
Using shared memory

input matrix A result matrix C

input matrix B

consider all result elements within the same

block:

all threads dealing with those elements

will have to access input data from the

same blocks of A and B for the first part

of the computation

Member of the Helmholtz Association April 27, 2021 Slide 19 24

BLOCK MATRIX MULTIPLICATION
Using shared memory

input matrix A result matrix C

input matrix B

consider all result elements within the same

block:

all threads dealing with those elements

will have to access input data from the

same blocks of A and B for the first part

of the computation

same counts for the successing

compute parts

Member of the Helmholtz Association April 27, 2021 Slide 19 24

BLOCK MATRIX MULTIPLICATION
Using shared memory

input matrix A result matrix C

input matrix B

shared memory

consider all result elements within the same

block:

all threads dealing with those elements

will have to access input data from the

same blocks of A and B for the first part

of the computation

same counts for the successing

compute parts

hence store a data copy of the input

blocks into shared memory

this prevents repeated reads from the

global memory

Member of the Helmholtz Association April 27, 2021 Slide 19 24

BLOCK MATRIX MULTIPLICATION
Using shared memory

input matrix A result matrix C

input matrix B

shared memory

consider all result elements within the same

block:

mapping logical matrix blocks to your

Cuda thread blocks ensures that all

threads in your result blocks see the

same shared memory

each thread reads 1 element of A and 1

element of B and stores in into the

shared memory

Member of the Helmholtz Association April 27, 2021 Slide 19 24

BLOCK MATRIX MULTIPLICATION
Workflow

Shared Memory

for each result element (thread):

set result element to zero

for each pair of blocks

copy input data to shared memory (one

element from A and B)

do partial sum using shared memory

add partial sum to result element

Member of the Helmholtz Association April 27, 2021 Slide 20 24

BLOCK MATRIX MULTIPLICATION
Workflow

Shared Memory

for each result element (thread):

set result element to zero

for each pair of blocks

copy input data to shared memory (one

element from A and B)

do partial sum using shared memory

add partial sum to result element

Member of the Helmholtz Association April 27, 2021 Slide 20 24

BLOCK MATRIX MULTIPLICATION
Workflow

Shared memory

for each result element (thread):

set result element to zero

for each pair of blocks

copy input data to shared memory (one

element from A and B)

do partial sum using shared memory

add partial sum to result element

Member of the Helmholtz Association April 27, 2021 Slide 20 24

BLOCK MATRIX MULTIPLICATION
Workflow

for each result element (thread):

set result element to zero

for each pair of blocks

copy input data to shared memory (one

element from A and B)

do partial sum using shared memory

add partial sum to result element

Member of the Helmholtz Association April 27, 2021 Slide 20 24

BLOCK MATRIX MULTIPLICATION
Thread synchronization

Shared Memory

Thread synchronization

Threads within a thread block might be

executed one after the other. Hence,

synchronization is needed !

Synchronize threads within a thread
block

syncthreads ();

Member of the Helmholtz Association April 27, 2021 Slide 21 24

BLOCK MATRIX MULTIPLICATION
Thread synchronization

Shared Memory

for each result element (thread):

set result element to zero

for each pair of blocks

copy input data to shared memory (one

element from A and B)

wait until all threads have copied their

data

do partial sum

wait until all threads finished

computation on current data

add partial sum to result element

Member of the Helmholtz Association April 27, 2021 Slide 21 24

BLOCK MATRIX MULTIPLICATION
Offsets and indexes

Shared Memory

idea: use (2d coordinates of) upper left

corner of input blocks as reference

relative positions inside the input blocks

correspond to the local (block internal)

thread indexes

starting point:

row in A (blockAy):

blockIdx.y * block size

col in B (blockBx):

blockidx.x * block size

blockAx and blockBy will be 0 at start

Member of the Helmholtz Association April 27, 2021 Slide 22 24

BLOCK MATRIX MULTIPLICATION
Offsets and indexes

Shared Memory

idea: use (2d coordinates of) upper left

corner of input blocks as reference

moving input blocks:

A moving to x direction by adding:

block size

B moving to y direction by adding:

n * block size

shared memory blocks:

use local (block internal) thread indexes

to select correct row and column

Member of the Helmholtz Association April 27, 2021 Slide 22 24

EXERCISE
Matrix multiplication with Cuda using shared memory

Location:

.../exercises/tasks/Cuda MM shared/Instructions.ipynb

Member of the Helmholtz Association April 27, 2021 Slide 23 24

EXERCISE
Measured numbers

Results on JUWELS Booster (gflops):

matrix size 1024 4096 8192 16384

Simple 286 1186 1554 1769

Shared memory(16,16) 296 952 1560 1742

Shared memory(32,32) 339 1369 1945 2205

Member of the Helmholtz Association April 27, 2021 Slide 24 24

EXERCISE
Measured numbers

Results on JUWELS Booster (gflops):

matrix size 1024 4096 8192 16384

Simple 286 1186 1554 1769

Shared memory(16,16) 296 952 1560 1742

Shared memory(32,32) 339 1369 1945 2205

Thank you for your attention!

Member of the Helmholtz Association April 27, 2021 Slide 24 24

