GPU PROGRAMMING WITH CUDA
An Introduction to CUDA Fortran

April 30, 2021 | Kaveh Haghighi Mood | JSC

OVERVIEW

e Introduction

e CUDA Fortran basics

e Kernel loop directives (CUF kernels)
e CUDA Fortran Limitations

e ISO standard Fortran + GPUs

o Resources

Member of the Helmholtz Association April 30, 2021 Slide 1

/)

JULICH

Forschungszentrum

WHY CUDA FORTRAN?

GPU support in native Fortran language

Libraries and directive-based programming models are not flexible enough
Not so difficult!

Interoperable with OpenACC

Similar to CUDA C

= CUDA Libraries

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 2 Forschungszentrum

FORTRAN VS CUDA FORTRAN

Fortran

program testVecAdd module mathOps
use mathOps contains

implicit none
subroutine vecAdd(a,b)

integer, parameter :: N = 40000 implicit none

real :: a(N)
real :: a(:)
a = 10.0 real :: b
call vecAdd(a,1.0) integer :: i, n
printx, "max_diff=", maxval(a-11.0)
n = size(a)
end program testVecAdd do i=1,n
a(i)=a(i)+b
enddo

end subroutine vecAdd
end module mathOps

IJ JULICH

Member of the Helmholtz Association April 30, 2021 Slide 3 Forschungszentrum

FORTRAN VS CUDA FORTRAN

CUDA Fortran

program testVecAdd
use mathOps

use cudafor
implicit none

integer, parameter :: N = 40000
real :: a(N)

real,device :: a_d(N)

integer tBlock, grid

a 10.0
a_d = a

tBlock = 256

grid = ceiling(real(N)/tBlock)

call vecAdd<<<grid, tBlock>>>(a_d,1.0)
a = ad

printx, "max_diff=", maxval(a-11.0)

ol

end program testVecAdd

Member of the Helmholtz Association April 30, 2021

module mathOps

contains
attributes(global) subroutine vecAdd(a,b)
implicit none

real :: a(:)
real,value :: b
integer :: i, n

n = size(a)
i= blockDim%x+* (blockIdx%x-1)+threadIdx%x
if (i=<n) then
a(i)=a(i)+b
endif

end subroutine vecAdd
end module mathOps

IJ JULICH

Slide 4 Forschungszentrum

CUDA FORTRAN BASICS

Data management

= Fortran enabled for CUDA

- device attribute — declare variables in the device memory

- managed attribute — declare unified memory arrays

- Standard Fortran array assignment — data copies between host and device + sync
- Standard Fortran allocate and deallocate — for both host and device allocations

= CUDA API calls — memory copy functions (cudaMemcpy, cudaMemcpy2D,...) are also
available

= Scalars — CUDA runtime responsibility, if passed by value

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 5 Forschungszentrum

CUDA FORTRAN BASICS

Kernel lunch

= Fortran enabled for CUDA
- triple chevron notation:
call kernel<<<grid,block[,bytes][,streamid]>>>(argl,arg2,...)

- attributes(global) — mark kernel subroutines
- use cudafor — CUDA Fortran types (blockDim%x, blockIdx%x)

= Similar to CUDA C loops are replaced with bound checks

= Lunch parameters can be extended to two and three dimensions
with dim3 derived type:

type(dim3) :: gridDim, blockDim

blockDim = dim3(32,32,1)

gridDim = dim3(ceiling(real(NN)/tBlock%x), ceiling(real(NM)/tBlock%y), 1)
call calcKernel<<<gridDim,blockDim>>>(A_dev,Anew_dev)

@) JULICH
Member of the Helmholtz Association April 30, 2021 Slide 6 J

Forschungszentrum

TASK1

The first CUDA Fortran program
In this exercise, we'll scale a vector (array) of single-precision numbers by a scalar.
= Navigate to:
~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/scale_vector

= Look at Instructions.ipynb for instructions
= Call source setup.sh to load the modules of this task into your environment

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 7 Forschungszentrum

IMPORTANT NOTES

= use cudafor is necessary to use CUDA Fortran types

= The Fortran array notation should be used for simple data transfers not complicated
calculations

= Only one device array is allowed on the right hand side. Following statement is not legal:
A= C _dev + B_dev

= CUDA Fortran source code should have .cuf or .CUF extension or you can add "-cuda" to
compiler flags

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 8 Forschungszentrum

TASK2

Jacobi solver with explicit kernel

= Navigate to:
~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-explicit

= Look at Instructions.ipynb for instructions
= Call source setup.sh to load the modules of this task into your environment

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 9 Forschungszentrum

CUF KERNELS

= To many loops? Reductions? Writing kernels is difficult?
= Compiler can write kernels for you, using ! $CUF directive:

!$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>
do i=1,N
do j=1,M
do k=1,P
enddo
endo
enddo

IJ JULICH

Member of the Helmholtz Association April 30, 2021 Slide 10 Forschungszentrum

CUF KERNELS

= Compiler can choose lunch parameters, if "+" is used

= The n parameters after do, denotes the minimum debt of nested loops
= DO loops must have invariant loop limits

= GOTO or EXIT statements are not allowed

= Array syntax are not allowed

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 11 Forschungszentrum

TASK3

Jacobi solver with kernel loop directives

= Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-cuf

= Look at Instructions.ipynb for instructions
= Call source setup.sh to load the modules of this task into your environment
= Compare the results with the explicit kernel version

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 12 Forschungszentrum

CUDA FORTRAN LIMITATIONS

= Not portable! You have to use Nvidia GPUs

= Supported only by Nvidia HPC SDK (formerly known as PGI) and IBM XL Fortran compilers
= For some CUDA libraries, you have to write interfaces

= Small community

@) JULICH
Member of the Helmholtz Association April 30, 2021 Slide 13 J Forschungszentrum

ISO STANDARD FORTRAN + GPUS!

= Non-standard libraries, directives or language extensions are not attractive enough?
= Standard portable acceleration is possible now!
= Fortran 2008 DO CONCURRENT supported by nvfortran:

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)

do i=1,n
a(i)=a(i)+b

enddo

end subroutine vecAdd

Member of the Helmholtz Association April 30, 2021

subroutine vecAdd(a,b)
implicit none

real :: a(:)
real :: b
integer :: i, n

n = size(a)

do concurrent (i = 1: n)
a(i)=a(i)+b

enddo

end subroutine vecAdd

IJ JULICH

Slide 14 Forschungszentrum

ISO STANDARD FORTRAN ON GPUS!

= Correctness? — You are responsible
» Data transfer? — Compiler and runtime env

= Additional -stdpar compilation flag is necessary

- -stdpar=multicore— compiles for CPU
- -stdpar=gpu,multicore— compiles for GPU or CPU

@) JULICH
Member of the Helmholtz Association April 30, 2021 Slide 15 J Forschungszentrum

ISO STANDARD FORTRAN ON GPUS!

= Nested loop example:
doi=1,n
do j =1,m
C(i,j)=a(i)+b(j)
enddo
enddo

= Data privatization:
DO CONCURRENT (...) [locality-spec]
locality-spec options:
local(list)

local_init(list)
share(list)

Member of the Helmholtz Association April 30, 2021

do concurrent
C(i,j)=a(i)+

enddo

Slide 16

(i
+b

i
(j

)

1: n, j=1:

m)

/)

JULICH

Forschungszentrum

TASK4

Jacobi solver with do concurrent

= Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-std

= Look at Instructions.ipynb for instructions
= Call source setup.sh to load the modules of this task into your environment
= Compare the results with the explicit and CUF kernel versions

l) JULICH

Member of the Helmholtz Association April 30, 2021 Slide 17 Forschungszentrum

RESOURCES

= CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
= CUDA Fortran Porting Guide
= CUDA Fortran Programming Guide and Reference

= Examples:
NVHPC-INSTALLDIR/arch/version/examples

IJ JULICH

Member of the Helmholtz Association April 30, 2021 Slide 18 Forschungszentrum

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

RESOURCES

= CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013
= CUDA Fortran Porting Guide
= CUDA Fortran Programming Guide and Reference

= Examples:
NVHPC-INSTALLDIR/arch/version/examples

Thank you for your attention!

IJ JULICH

Member of the Helmholtz Association April 30, 2021 Slide 18 Forschungszentrum

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

	Introduction
	CUDA Fortran basics
	Kernel loop directives (CUF kernels)
	CUDA Fortran Limitations
	ISO standard Fortran + GPUs
	Resources

