
GPU PROGRAMMING WITH CUDA
An Introduction to CUDA Fortran
April 30, 2021 Kaveh Haghighi Mood JSC

Member of the Helmholtz Association

OVERVIEW

Introduction

CUDA Fortran basics

Kernel loop directives (CUF kernels)

CUDA Fortran Limitations

ISO standard Fortran + GPUs

Resources

Member of the Helmholtz Association April 30, 2021 Slide 1

WHY CUDA FORTRAN?

GPU support in native Fortran language

Libraries and directive-based programming models are not flexible enough

Not so difficult!

Interoperable with OpenACC

Similar to CUDA C

CUDA Libraries

Member of the Helmholtz Association April 30, 2021 Slide 2

FORTRAN VS CUDA FORTRAN
Fortran

program testVecAdd

use mathOps

implicit none

integer, parameter :: N = 40000

real :: a(N)

a = 10.0

call vecAdd(a,1.0)

print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps

contains

subroutine vecAdd(a,b)

implicit none

real :: a(:)

real :: b

integer :: i, n

n = size(a)

do i=1,n

a(i)=a(i)+b

enddo

end subroutine vecAdd

end module mathOps

Member of the Helmholtz Association April 30, 2021 Slide 3

FORTRAN VS CUDA FORTRAN
CUDA Fortran

program testVecAdd

use mathOps

use cudafor

implicit none

integer, parameter :: N = 40000

real :: a(N)

real,device :: a_d(N)

integer tBlock, grid

a = 10.0

a_d = a

tBlock = 256

grid = ceiling(real(N)/tBlock)

call vecAdd<<<grid,tBlock>>>(a_d,1.0)

a = a_d

print*,"max_diff=", maxval(a-11.0)

end program testVecAdd

module mathOps

contains

attributes(global) subroutine vecAdd(a,b)

implicit none

real :: a(:)

real,value :: b

integer :: i, n

n = size(a)

i= blockDim%x*(blockIdx%x-1)+threadIdx%x

if (i=<n) then

a(i)=a(i)+b

endif

end subroutine vecAdd

end module mathOps

Member of the Helmholtz Association April 30, 2021 Slide 4

CUDA FORTRAN BASICS
Data management

Fortran enabled for CUDA

- device attribute −→ declare variables in the device memory

- managed attribute −→ declare unified memory arrays

- Standard Fortran array assignment −→ data copies between host and device + sync

- Standard Fortran allocate and deallocate −→ for both host and device allocations

CUDA API calls −→ memory copy functions (cudaMemcpy, cudaMemcpy2D,...) are also

available

Scalars −→ CUDA runtime responsibility, if passed by value

Member of the Helmholtz Association April 30, 2021 Slide 5

CUDA FORTRAN BASICS
Kernel lunch

Fortran enabled for CUDA

- triple chevron notation:

call kernel<<<grid,block[,bytes][,streamid]>>>(arg1,arg2,...)

- attributes(global) −→ mark kernel subroutines

- use cudafor −→ CUDA Fortran types (blockDim%x, blockIdx%x)

Similar to CUDA C loops are replaced with bound checks

Lunch parameters can be extended to two and three dimensions

with dim3 derived type:

type(dim3) :: gridDim, blockDim

blockDim = dim3(32,32,1)

gridDim = dim3(ceiling(real(NN)/tBlock%x), ceiling(real(NM)/tBlock%y), 1)

call calcKernel<<<gridDim,blockDim>>>(A_dev,Anew_dev)

Member of the Helmholtz Association April 30, 2021 Slide 6

TASK1
The first CUDA Fortran program

In this exercise, we’ll scale a vector (array) of single-precision numbers by a scalar.

Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/scale_vector

Look at Instructions.ipynb for instructions

Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association April 30, 2021 Slide 7

IMPORTANT NOTES

use cudafor is necessary to use CUDA Fortran types

The Fortran array notation should be used for simple data transfers not complicated

calculations

Only one device array is allowed on the right hand side. Following statement is not legal:

A = C_dev + B_dev

CUDA Fortran source code should have .cuf or .CUF extension or you can add "-cuda" to

compiler flags

Member of the Helmholtz Association April 30, 2021 Slide 8

TASK2
Jacobi solver with explicit kernel

Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-explicit

Look at Instructions.ipynb for instructions

Call source setup.sh to load the modules of this task into your environment

Member of the Helmholtz Association April 30, 2021 Slide 9

CUF KERNELS

To many loops? Reductions? Writing kernels is difficult?

Compiler can write kernels for you, using !$CUF directive:

!$cuf kernel do[(n)] <<< grid, block, stream=streamid >>>

do i=1,N

do j=1,M

do k=1,P

...

enddo

endo

enddo

Member of the Helmholtz Association April 30, 2021 Slide 10

CUF KERNELS

Compiler can choose lunch parameters, if "*" is used

The n parameters after do, denotes the minimum debt of nested loops

DO loops must have invariant loop limits

GOTO or EXIT statements are not allowed

Array syntax are not allowed

Member of the Helmholtz Association April 30, 2021 Slide 11

TASK3
Jacobi solver with kernel loop directives

Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-cuf

Look at Instructions.ipynb for instructions

Call source setup.sh to load the modules of this task into your environment

Compare the results with the explicit kernel version

Member of the Helmholtz Association April 30, 2021 Slide 12

CUDA FORTRAN LIMITATIONS

Not portable! You have to use Nvidia GPUs

Supported only by Nvidia HPC SDK (formerly known as PGI) and IBM XL Fortran compilers

For some CUDA libraries, you have to write interfaces

Small community

Member of the Helmholtz Association April 30, 2021 Slide 13

ISO STANDARD FORTRAN + GPUS!

Non-standard libraries, directives or language extensions are not attractive enough?

Standard portable acceleration is possible now!

Fortran 2008 DO CONCURRENT supported by nvfortran:

subroutine vecAdd(a,b)

implicit none

real :: a(:)

real :: b

integer :: i, n

n = size(a)

do i=1,n

a(i)=a(i)+b

enddo

end subroutine vecAdd

subroutine vecAdd(a,b)

implicit none

real :: a(:)

real :: b

integer :: i, n

n = size(a)

do concurrent (i = 1: n)

a(i)=a(i)+b

enddo

end subroutine vecAdd

Member of the Helmholtz Association April 30, 2021 Slide 14

ISO STANDARD FORTRAN ON GPUS!

Correctness? −→ You are responsible

Data transfer? −→ Compiler and runtime env

Additional -stdpar compilation flag is necessary

- -stdpar=multicore−→ compiles for CPU

- -stdpar=gpu,multicore−→ compiles for GPU or CPU

Member of the Helmholtz Association April 30, 2021 Slide 15

ISO STANDARD FORTRAN ON GPUS!

Nested loop example:

do i = 1, n

do j =1,m

C(i,j)=a(i)+b(j)

enddo

enddo

do concurrent (i = 1: n, j=1: m)

C(i,j)=a(i)+b(j)

enddo

Data privatization:
DO CONCURRENT (...) [locality-spec]

locality-spec options:

local(list)

local_init(list)

share(list)

Member of the Helmholtz Association April 30, 2021 Slide 16

TASK4
Jacobi solver with do concurrent

Navigate to:

~/CUDA-Course/11-CUDA-Fortran/exercises/tasks/jacobi-std

Look at Instructions.ipynb for instructions

Call source setup.sh to load the modules of this task into your environment

Compare the results with the explicit and CUF kernel versions

Member of the Helmholtz Association April 30, 2021 Slide 17

RESOURCES

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013

CUDA Fortran Porting Guide

CUDA Fortran Programming Guide and Reference

Examples:

NVHPC-INSTALLDIR/arch/version/examples

Member of the Helmholtz Association April 30, 2021 Slide 18

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

RESOURCES

CUDA Fortran for Scientists and Engineers by Ruetsch and Fatica 2013

CUDA Fortran Porting Guide

CUDA Fortran Programming Guide and Reference

Examples:

NVHPC-INSTALLDIR/arch/version/examples

Thank you for your attention!

Member of the Helmholtz Association April 30, 2021 Slide 18

https://www.elsevier.com/books/cuda-fortran-for-scientists-and-engineers/ruetsch/978-0-12-416970-8
https://www.pgroup.com/lit/literature/pgi-cuf-pg-2019.pdf
https://docs.nvidia.com/hpc-sdk/compilers/pdf/hpc209cudaforug.pdf

	Introduction
	CUDA Fortran basics
	Kernel loop directives (CUF kernels)
	CUDA Fortran Limitations
	ISO standard Fortran + GPUs
	Resources

