000903628 001__ 903628
000903628 005__ 20220224125156.0
000903628 0247_ $$2doi$$a10.1103/PhysRevB.104.224418
000903628 0247_ $$2ISSN$$a1098-0121
000903628 0247_ $$2ISSN$$a2469-9977
000903628 0247_ $$2ISSN$$a0163-1829
000903628 0247_ $$2ISSN$$a0556-2805
000903628 0247_ $$2ISSN$$a1095-3795
000903628 0247_ $$2ISSN$$a1538-4489
000903628 0247_ $$2ISSN$$a1550-235X
000903628 0247_ $$2ISSN$$a2469-9950
000903628 0247_ $$2ISSN$$a2469-9969
000903628 0247_ $$2Handle$$a2128/29497
000903628 0247_ $$2altmetric$$aaltmetric:118934597
000903628 0247_ $$2WOS$$aWOS:000753869800002
000903628 037__ $$aFZJ-2021-05277
000903628 082__ $$a530
000903628 1001_ $$00000-0002-3036-0467$$aPopova-Gorelova, Daria$$b0$$eCorresponding author
000903628 245__ $$aHeisenberg representation of nonthermal ultrafast laser excitation of magnetic precessions
000903628 260__ $$aWoodbury, NY$$bInst.$$c2021
000903628 3367_ $$2DRIVER$$aarticle
000903628 3367_ $$2DataCite$$aOutput Types/Journal article
000903628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639660771_31592
000903628 3367_ $$2BibTeX$$aARTICLE
000903628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903628 3367_ $$00$$2EndNote$$aJournal Article
000903628 520__ $$aWe derive the Heisenberg representation of the ultrafast inverse Faraday effect that provides the time evolution of magnetic vectors of a magnetic system during its interaction with a laser pulse. We obtain a time-dependent effective magnetic operator acting in the Hilbert space of the total angular momentum that describes a process of nonthermal excitation of magnetic precessions in an electronic system by a circularly polarized laser pulse. The magnetic operator separates the effect of the laser pulse on the magnetic system from other magnetic interactions. The effective magnetic operator provides the equations of motion of magnetic vectors during the excitation by the laser. We show that magnetization dynamics calculated with these equations is equivalent to magnetization dynamics calculated with the time-dependent Schrödinger equation, which takes into account the interaction of an electronic system with the electric field of light. We model and compare laser-induced precessions of magnetic sublattices of the easy-plane and easy-axis antiferromagnetic systems. Using these models, we show how the ultrafast inverse Faraday effect induces a net magnetic moment in antiferromagnets and demonstrate that a crystal field environment and the exchange interaction play essential roles for laser-induced magnetization dynamics even during the action of a pump pulse. Using our approach, we show that light-induced precessions can start even during the action of the pump pulse with a duration several tens times shorter than the period of induced precessions and affect the position of magnetic vectors after the action of the pump pulse.
000903628 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000903628 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903628 7001_ $$0P:(DE-Juel1)130568$$aBringer, Andreas$$b1$$ufzj
000903628 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
000903628 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.104.224418$$gVol. 104, no. 22, p. 224418$$n22$$p224418$$tPhysical review / B$$v104$$x1098-0121$$y2021
000903628 8564_ $$uhttps://juser.fz-juelich.de/record/903628/files/PhysRevB.104.224418.pdf$$yOpenAccess
000903628 909CO $$ooai:juser.fz-juelich.de:903628$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130568$$aForschungszentrum Jülich$$b1$$kFZJ
000903628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
000903628 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000903628 9141_ $$y2021
000903628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000903628 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000903628 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2019$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903628 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000903628 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000903628 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000903628 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000903628 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903628 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000903628 980__ $$ajournal
000903628 980__ $$aVDB
000903628 980__ $$aUNRESTRICTED
000903628 980__ $$aI:(DE-Juel1)IAS-1-20090406
000903628 980__ $$aI:(DE-Juel1)PGI-1-20110106
000903628 980__ $$aI:(DE-82)080009_20140620
000903628 980__ $$aI:(DE-82)080012_20140620
000903628 9801_ $$aFullTexts