000903633 001__ 903633
000903633 005__ 20220103172057.0
000903633 0247_ $$2doi$$a10.1016/j.polymer.2021.123671
000903633 0247_ $$2ISSN$$a0032-3861
000903633 0247_ $$2ISSN$$a1873-2291
000903633 0247_ $$2Handle$$a2128/29587
000903633 0247_ $$2altmetric$$aaltmetric:102560590
000903633 0247_ $$2WOS$$aWOS:000646249600004
000903633 037__ $$aFZJ-2021-05282
000903633 082__ $$a540
000903633 1001_ $$00000-0002-0074-5657$$aSmith, Gregory N.$$b0$$eCorresponding author
000903633 245__ $$aThe microscopic distribution of hydrophilic polymers in interpenetrating polymer networks (IPNs) of medical grade silicone
000903633 260__ $$aOxford$$bElsevier Science$$c2021
000903633 3367_ $$2DRIVER$$aarticle
000903633 3367_ $$2DataCite$$aOutput Types/Journal article
000903633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640174922_7622
000903633 3367_ $$2BibTeX$$aARTICLE
000903633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903633 3367_ $$00$$2EndNote$$aJournal Article
000903633 520__ $$aBy introducing hydrophilic polymers into silicone medical devices, highly beneficial biomedical properties can be realized. An established solution to introduce hydrophilic polymers is to form an interpenetrating polymer network (IPN) by performing the hydrogel synthesis in the presence of silicone swollen in supercritical carbon dioxide. The precise distribution of the two polymers is not known, and determining this is the goal of this study. Neutron scattering and microscopy were used to determine the distribution of the hydrophilic guest polymer. Atomic force microscopy revealed that the important length scale on the surface of these materials is 10–100 nm, and spin-echo small-angle neutron scattering (SESANS) on IPNs submerged in D2O revealed structures of the same scale within the interior and enabled quantification of their size. SESANS with hydration by D2O proved to be the only scattering technique that could determine the structure of the bulk of these types of materials, and it should be used as an important tool for characterizing polymer medical devices.
000903633 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903633 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903633 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000903633 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000903633 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000903633 7001_ $$00000-0003-4377-8747$$aBrok, Erik$$b1
000903633 7001_ $$00000-0001-6973-3155$$aSchmiele, Martin$$b2
000903633 7001_ $$00000-0002-8998-9390$$aMortensen, Kell$$b3
000903633 7001_ $$00000-0002-5331-8085$$aBouwman, Wim G.$$b4
000903633 7001_ $$00000-0002-3263-963X$$aDuif, Chris P.$$b5
000903633 7001_ $$00000-0002-2184-3360$$aHassenkam, Tue$$b6
000903633 7001_ $$00000-0003-4991-4519$$aAlm, Martin$$b7
000903633 7001_ $$00000-0002-1183-8795$$aThomsen, Peter$$b8
000903633 7001_ $$00000-0002-4694-4299$$aArleth, Lise$$b9
000903633 773__ $$0PERI:(DE-600)2013972-X$$a10.1016/j.polymer.2021.123671$$gVol. 224, p. 123671 -$$p123671 -$$tPolymer$$v224$$x0032-3861$$y2021
000903633 8564_ $$uhttps://juser.fz-juelich.de/record/903633/files/POLYMER-20-3407_Final-accepted-manuscript.pdf$$yOpenAccess
000903633 909CO $$ooai:juser.fz-juelich.de:903633$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000903633 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-0074-5657$$aForschungszentrum Jülich$$b0$$kFZJ
000903633 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903633 9141_ $$y2021
000903633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000903633 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903633 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPOLYMER : 2019$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903633 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000903633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000903633 920__ $$lyes
000903633 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903633 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
000903633 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000903633 980__ $$ajournal
000903633 980__ $$aVDB
000903633 980__ $$aUNRESTRICTED
000903633 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903633 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000903633 980__ $$aI:(DE-588b)4597118-3
000903633 9801_ $$aFullTexts