000903637 001__ 903637
000903637 005__ 20220103172050.0
000903637 0247_ $$2doi$$a10.1088/2058-9565/ac13c8
000903637 0247_ $$2Handle$$a2128/29500
000903637 0247_ $$2altmetric$$aaltmetric:113918702
000903637 0247_ $$2WOS$$aWOS:000700891400001
000903637 037__ $$aFZJ-2021-05286
000903637 082__ $$a530
000903637 1001_ $$00000-0003-0558-4685$$aGustiani, Cica$$b0$$eCorresponding author
000903637 245__ $$aBlind oracular quantum computation
000903637 260__ $$aPhiladelphia, PA$$bIOP Publishing$$c2021
000903637 3367_ $$2DRIVER$$aarticle
000903637 3367_ $$2DataCite$$aOutput Types/Journal article
000903637 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639665037_30760
000903637 3367_ $$2BibTeX$$aARTICLE
000903637 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903637 3367_ $$00$$2EndNote$$aJournal Article
000903637 520__ $$aIn the standard oracle model, an oracle efficiently evaluates an unknown classical function independent of the quantum algorithm itself. Quantum algorithms have a complex interrelationship to their oracles; for example the possibility of quantum speedup is affected by the manner by which oracles are implemented. Therefore, it is physically meaningful to separate oracles from their quantum algorithms, and we introduce one such separation here. We define the blind oracular quantum computation (BOQC) scheme, in which the oracle is a distinct node in a quantum network. Our work augments the client–server setting of quantum computing, in which a powerful quantum computer server is available on the network for discreet use by clients on the network with low quantum power. In BOQC, an oracle is another client that cooperates with the main client so that an oracular quantum algorithm is run on the server. The cooperation between the main client and the oracle takes place (almost) without communication. We prove BOQC to be blind: the server cannot learn anything about the clients' computation. This proof is performed within the composable security definitions provided by the formalism of abstract cryptography. We enhance the BOQC scheme to be runnable with minimal physical qubits when run on a solid-state quantum network; we prove that this scheme, which we refer to as BOQCo (BOQC-optimized), possesses the same security as BOQC.
000903637 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000903637 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903637 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David P$$b1
000903637 773__ $$0PERI:(DE-600)2906136-2$$a10.1088/2058-9565/ac13c8$$gVol. 6, no. 4, p. 045022 -$$n4$$p045022 -$$tQuantum science and technology$$v6$$x2058-9565$$y2021
000903637 8564_ $$uhttps://juser.fz-juelich.de/record/903637/files/Gustiani_2021_Quantum_Sci._Technol._6_045022.pdf$$yOpenAccess
000903637 909CO $$ooai:juser.fz-juelich.de:903637$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903637 9101_ $$0I:(DE-588b)36225-6$$60000-0003-0558-4685$$aRWTH Aachen$$b0$$kRWTH
000903637 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b1$$kFZJ
000903637 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000903637 9141_ $$y2021
000903637 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000903637 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903637 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUANTUM SCI TECHNOL : 2019$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903637 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000903637 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000903637 920__ $$lyes
000903637 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000903637 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000903637 980__ $$ajournal
000903637 980__ $$aVDB
000903637 980__ $$aUNRESTRICTED
000903637 980__ $$aI:(DE-Juel1)PGI-11-20170113
000903637 980__ $$aI:(DE-Juel1)PGI-2-20110106
000903637 9801_ $$aFullTexts