000903657 001__ 903657
000903657 005__ 20230301071416.0
000903657 0247_ $$2doi$$a10.1007/s00429-021-02418-1
000903657 0247_ $$2ISSN$$a0044-2232
000903657 0247_ $$2ISSN$$a0340-2061
000903657 0247_ $$2ISSN$$a1432-0568
000903657 0247_ $$2ISSN$$a1863-2653
000903657 0247_ $$2ISSN$$a1863-2661
000903657 0247_ $$2Handle$$a2128/30721
000903657 0247_ $$2altmetric$$aaltmetric:118822393
000903657 0247_ $$2pmid$$a34882263
000903657 0247_ $$2WOS$$aWOS:000728454800001
000903657 037__ $$aFZJ-2021-05306
000903657 082__ $$a610
000903657 1001_ $$0P:(DE-Juel1)185938$$aFriedrich, Patrick$$b0$$eCorresponding author
000903657 245__ $$aIs it left or is it right? A classification approach for investigating hemispheric differences in low and high dimensionality
000903657 260__ $$aHeidelberg$$bSpringer$$c2022
000903657 3367_ $$2DRIVER$$aarticle
000903657 3367_ $$2DataCite$$aOutput Types/Journal article
000903657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645093281_26757
000903657 3367_ $$2BibTeX$$aARTICLE
000903657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903657 3367_ $$00$$2EndNote$$aJournal Article
000903657 520__ $$aHemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel data-driven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low- and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.
000903657 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000903657 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903657 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b1
000903657 7001_ $$0P:(DE-Juel1)174198$$aMochalski, Lisa N.$$b2
000903657 7001_ $$0P:(DE-Juel1)184969$$aLi, Xuan$$b3
000903657 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b4$$ufzj
000903657 7001_ $$0P:(DE-Juel1)176972$$aKröll, Jean-Philippe$$b5
000903657 7001_ $$0P:(DE-Juel1)176497$$aWiersch, Lisa$$b6
000903657 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7
000903657 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b8
000903657 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-021-02418-1$$p425–440$$tBrain structure & function$$v227$$x0044-2232$$y2022
000903657 8564_ $$uhttps://juser.fz-juelich.de/record/903657/files/Friedrich2022_Article_IsItLeftOrIsItRightAClassifica.pdf$$yOpenAccess
000903657 8767_ $$d2022-12-20$$eHybrid-OA$$jDEAL
000903657 909CO $$ooai:juser.fz-juelich.de:903657$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185938$$aForschungszentrum Jülich$$b0$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b1$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174198$$aForschungszentrum Jülich$$b2$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184969$$aForschungszentrum Jülich$$b3$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b4$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176972$$aForschungszentrum Jülich$$b5$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176497$$aForschungszentrum Jülich$$b6$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
000903657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b8$$kFZJ
000903657 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000903657 9141_ $$y2022
000903657 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000903657 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903657 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000903657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903657 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903657 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2021$$d2022-11-17
000903657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000903657 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000903657 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903657 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903657 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000903657 920__ $$lyes
000903657 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000903657 9801_ $$aFullTexts
000903657 980__ $$ajournal
000903657 980__ $$aVDB
000903657 980__ $$aUNRESTRICTED
000903657 980__ $$aI:(DE-Juel1)INM-7-20090406
000903657 980__ $$aAPC