001     903659
005     20240712112819.0
024 7 _ |a 10.1515/zpch-2021-3136
|2 doi
024 7 _ |a 0044-3336
|2 ISSN
024 7 _ |a 0372-8501
|2 ISSN
024 7 _ |a 0372-9656
|2 ISSN
024 7 _ |a 0372-9664
|2 ISSN
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2196-7156
|2 ISSN
024 7 _ |a 2128/31440
|2 Handle
024 7 _ |a WOS:000744114500001
|2 WOS
037 _ _ |a FZJ-2021-05308
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Paulus, Marc
|0 P:(DE-Juel1)165914
|b 0
245 _ _ |a Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/ T 1 3D 7 Li NMR of superionic Li 10 GeP 2 S 12
260 _ _ |a Berlin
|c 2021
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657109464_11695
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of independent component analysis (ICA) for the analysis of two-dimensional (2D) spin-alignment echo–T 1 7Li NMR correlation data with transient echo detection as a third dimension is demonstrated for the superionic conductor Li10GeP2S12 (LGPS). ICA was combined with Laplace inversion, or discrete inverse Laplace transform (ILT), to obtain spectrally resolved 2D correlation maps. Robust results were obtained with the spectra as well as the vectorized correlation maps as independent components. It was also shown that the order of ICA and ILT steps can be swapped. While performing the ILT step before ICA provided better contrast, a substantial data compression can be achieved if ICA is executed first. Thereby the overall computation time could be reduced by one to two orders of magnitude, since the number of computationally expensive ILT steps is limited to the number of retained independent components. For LGPS, it was demonstrated that physically meaningful independent components and mixing matrices are obtained, which could be correlated with previously investigated material properties yet provided a clearer, better separation of features in the data. LGPS from two different batches was investigated, which showed substantial differences in their spectral and relaxation behavior. While in both cases this could be attributed to ionic mobility, the presented analysis may also clear the way for a more in-depth theoretical analysis based on numerical simulations. The presented method appears to be particularly suitable for samples with at least partially resolved static quadrupolar spectra, such as alkali metal ions in superionic conductors. The good stability of the ICA analysis makes this a prospect algorithm for preprocessing of data for a subsequent automatized analysis using machine learning concepts.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Paulus, Anja
|0 P:(DE-Juel1)166099
|b 1
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 2
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1515/zpch-2021-3136
|g Vol. 0, no. 0, p. 000010151520213136
|0 PERI:(DE-600)2020854-6
|n 6-8
|p
|t Zeitschrift für physikalische Chemie
|v 236
|y 2021
|x 0044-3336
856 4 _ |u https://juser.fz-juelich.de/record/903659/files/paulus_ICA_postprint_211023.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903659
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165914
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)165914
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166099
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)166099
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)162401
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z PHYS CHEM : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21