000903660 001__ 903660
000903660 005__ 20220103172050.0
000903660 0247_ $$2doi$$a10.1111/pce.14151
000903660 0247_ $$2ISSN$$a0140-7791
000903660 0247_ $$2ISSN$$a1365-3040
000903660 0247_ $$2Handle$$a2128/29605
000903660 0247_ $$2altmetric$$aaltmetric:109882019
000903660 0247_ $$2pmid$$apmid:34263935
000903660 0247_ $$2WOS$$aWOS:000679126000001
000903660 037__ $$aFZJ-2021-05309
000903660 041__ $$aEnglish
000903660 082__ $$a580
000903660 1001_ $$0P:(DE-HGF)0$$aAmini$$b0
000903660 245__ $$aTranscriptional regulation of ZIP genes is independent of local zinc status in Brachypodium shoots upon zinc deficiency and resupply
000903660 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2021
000903660 3367_ $$2DRIVER$$aarticle
000903660 3367_ $$2DataCite$$aOutput Types/Journal article
000903660 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640331257_21679
000903660 3367_ $$2BibTeX$$aARTICLE
000903660 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903660 3367_ $$00$$2EndNote$$aJournal Article
000903660 520__ $$aThe biological processes underlying zinc homeostasis are targets for genetic improvement of crops to counter human malnutrition. Detailed phenotyping, ionomic, RNA-Seq analyses and flux measurements with 67Zn isotope revealed whole-plant molecular events underlying zinc homeostasis upon varying zinc supply and during zinc resupply to starved Brachypodium distachyon (Brachypodium) plants. Although both zinc deficiency and excess hindered Brachypodium growth, accumulation of biomass and micronutrients into roots and shoots differed depending on zinc supply. The zinc resupply dynamics involved 1,893 zinc-responsive genes. Multiple zinc-regulated transporter and iron-regulated transporter (IRT)-like protein (ZIP) transporter genes and dozens of other genes were rapidly and transiently down-regulated in early stages of zinc resupply, suggesting a transient zinc shock, sensed locally in roots. Notably, genes with identical regulation were observed in shoots without zinc accumulation, pointing to root-to-shoot signals mediating whole-plant responses to zinc resupply. Molecular events uncovered in the grass model Brachypodium are useful for the improvement of staple monocots.
000903660 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000903660 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903660 7001_ $$0P:(DE-Juel1)165155$$aArsova, Borjana$$b1$$ufzj
000903660 7001_ $$0P:(DE-HGF)0$$aGobert$$b2
000903660 7001_ $$0P:(DE-HGF)0$$aCarnol$$b3
000903660 7001_ $$0P:(DE-HGF)0$$aBosman$$b4
000903660 7001_ $$0P:(DE-HGF)0$$aMotte$$b5
000903660 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b6
000903660 7001_ $$0P:(DE-HGF)0$$aHanikenne$$b7$$eCorresponding author
000903660 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.14151$$gVol. 44, no. 10, p. 3376 - 3397$$n10$$p3376 - 3397$$tPlant, cell & environment$$v44$$x0140-7791$$y2021
000903660 8564_ $$uhttps://juser.fz-juelich.de/record/903660/files/Plant%20Cell%20Environment%20-%202021%20-%20Amini%20-%20Transcriptional%20regulation%20of%20ZIP%20genes%20is%20independent%20of%20local%20zinc%20status%20in.pdf
000903660 8564_ $$uhttps://juser.fz-juelich.de/record/903660/files/Amini_et_al_SD_revised_final.docx$$yRestricted
000903660 8564_ $$uhttps://juser.fz-juelich.de/record/903660/files/Amini_et_al_manuscript_revised.docx$$yPublished on 2021-07-15. Available in OpenAccess from 2022-07-15.
000903660 909CO $$ooai:juser.fz-juelich.de:903660$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903660 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165155$$aForschungszentrum Jülich$$b1$$kFZJ
000903660 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000903660 9141_ $$y2021
000903660 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903660 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2019$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2019$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000903660 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903660 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000903660 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903660 920__ $$lyes
000903660 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000903660 980__ $$ajournal
000903660 980__ $$aVDB
000903660 980__ $$aUNRESTRICTED
000903660 980__ $$aI:(DE-Juel1)IBG-2-20101118
000903660 9801_ $$aFullTexts