001     903660
005     20220103172050.0
024 7 _ |a 10.1111/pce.14151
|2 doi
024 7 _ |a 0140-7791
|2 ISSN
024 7 _ |a 1365-3040
|2 ISSN
024 7 _ |a 2128/29605
|2 Handle
024 7 _ |a altmetric:109882019
|2 altmetric
024 7 _ |a pmid:34263935
|2 pmid
024 7 _ |a WOS:000679126000001
|2 WOS
037 _ _ |a FZJ-2021-05309
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Amini
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Transcriptional regulation of ZIP genes is independent of local zinc status in Brachypodium shoots upon zinc deficiency and resupply
260 _ _ |a Oxford [u.a.]
|c 2021
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1640331257_21679
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The biological processes underlying zinc homeostasis are targets for genetic improvement of crops to counter human malnutrition. Detailed phenotyping, ionomic, RNA-Seq analyses and flux measurements with 67Zn isotope revealed whole-plant molecular events underlying zinc homeostasis upon varying zinc supply and during zinc resupply to starved Brachypodium distachyon (Brachypodium) plants. Although both zinc deficiency and excess hindered Brachypodium growth, accumulation of biomass and micronutrients into roots and shoots differed depending on zinc supply. The zinc resupply dynamics involved 1,893 zinc-responsive genes. Multiple zinc-regulated transporter and iron-regulated transporter (IRT)-like protein (ZIP) transporter genes and dozens of other genes were rapidly and transiently down-regulated in early stages of zinc resupply, suggesting a transient zinc shock, sensed locally in roots. Notably, genes with identical regulation were observed in shoots without zinc accumulation, pointing to root-to-shoot signals mediating whole-plant responses to zinc resupply. Molecular events uncovered in the grass model Brachypodium are useful for the improvement of staple monocots.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Arsova, Borjana
|0 P:(DE-Juel1)165155
|b 1
|u fzj
700 1 _ |a Gobert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Carnol
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bosman
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Motte
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 6
700 1 _ |a Hanikenne
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1111/pce.14151
|g Vol. 44, no. 10, p. 3376 - 3397
|0 PERI:(DE-600)2020843-1
|n 10
|p 3376 - 3397
|t Plant, cell & environment
|v 44
|y 2021
|x 0140-7791
856 4 _ |u https://juser.fz-juelich.de/record/903660/files/Plant%20Cell%20Environment%20-%202021%20-%20Amini%20-%20Transcriptional%20regulation%20of%20ZIP%20genes%20is%20independent%20of%20local%20zinc%20status%20in.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/903660/files/Amini_et_al_SD_revised_final.docx
856 4 _ |y Published on 2021-07-15. Available in OpenAccess from 2022-07-15.
|u https://juser.fz-juelich.de/record/903660/files/Amini_et_al_manuscript_revised.docx
909 C O |o oai:juser.fz-juelich.de:903660
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165155
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL ENVIRON : 2019
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL ENVIRON : 2019
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21