Hauptseite > Publikationsdatenbank > Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective > print |
001 | 903666 | ||
005 | 20240712112819.0 | ||
024 | 7 | _ | |a 10.1016/j.jpowsour.2021.230345 |2 doi |
024 | 7 | _ | |a 0378-7753 |2 ISSN |
024 | 7 | _ | |a 1873-2755 |2 ISSN |
024 | 7 | _ | |a 2128/29501 |2 Handle |
024 | 7 | _ | |a altmetric:111757766 |2 altmetric |
024 | 7 | _ | |a WOS:000691505700002 |2 WOS |
037 | _ | _ | |a FZJ-2021-05315 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Chen, Zhiqiang |0 P:(DE-Juel1)176976 |b 0 |u fzj |
245 | _ | _ | |a Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective |
260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1639666093_30906 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The overpotential of Li-ion batteries is one of the most relevant characteristics influencing the power and energy densities of these battery systems. However, the intrinsic complexity and multi-influencing factors make it challenging to analyze the overpotential precisely. To decompose the total overpotential of a battery into various individual components, a pseudo-two-dimensional (P2D) model has been adopted and used for electrochemical simulations of a graphite-based porous electrode/Li battery. Analytical expressions for the total overpotential have been mathematically derived and split up into four terms, associated with the electrolyte concentration overpotential, the Li concentration overpotential in the solid, the kinetic overpotential, and the ohmic overpotential. All these four terms have been separately analyzed and are found to be strongly dependent on the physical/chemical battery parameters and the reaction-rate distribution inside the porous electrode. The reaction-rate distribution of the porous electrode is generally non-uniform and shows dynamic changes during (dis)charging, resulting in fluctuations in the four overpotential components. In addition, the disappearance of the phase-change information in the voltage curve of the graphite-based porous electrode/Li battery under moderate and high C-rates is ascribed to the Li concentration overpotential among solid particles, resulting from the non-uniform reaction-rate distribution. |
536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Danilov, Dmitri |0 P:(DE-Juel1)173719 |b 1 |u fzj |
700 | 1 | _ | |a Raijmakers, Luc |0 P:(DE-Juel1)176196 |b 2 |u fzj |
700 | 1 | _ | |a Chayambuka, Kudakwashe |0 P:(DE-Juel1)186070 |b 3 |u fzj |
700 | 1 | _ | |a Jiang, Ming |0 P:(DE-Juel1)173744 |b 4 |u fzj |
700 | 1 | _ | |a Zhou, Lei |0 P:(DE-Juel1)172962 |b 5 |
700 | 1 | _ | |a Zhou, Jiang |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 7 |u fzj |
700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 8 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1016/j.jpowsour.2021.230345 |g Vol. 509, p. 230345 - |0 PERI:(DE-600)1491915-1 |p 230345 - |t Journal of power sources |v 509 |y 2021 |x 0378-7753 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/903666/files/1-s2.0-S0378775321008570-main.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:903666 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176976 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)176976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)173719 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)176196 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186070 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)186070 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)173744 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)173744 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 4 |6 P:(DE-Juel1)173744 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172962 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 5 |6 P:(DE-Juel1)172962 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)165918 |
910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 8 |6 P:(DE-Juel1)165918 |
910 | 1 | _ | |a University of Technology Sydney |0 I:(DE-HGF)0 |b 8 |6 P:(DE-Juel1)165918 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J POWER SOURCES : 2019 |d 2021-01-28 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J POWER SOURCES : 2019 |d 2021-01-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|