000903667 001__ 903667
000903667 005__ 20240712112825.0
000903667 0247_ $$2doi$$a10.1021/acsami.1c03997
000903667 0247_ $$2ISSN$$a1944-8244
000903667 0247_ $$2ISSN$$a1944-8252
000903667 0247_ $$2Handle$$a2128/30545
000903667 0247_ $$2altmetric$$aaltmetric:106224972
000903667 0247_ $$2pmid$$apmid:34013732
000903667 0247_ $$2WOS$$aWOS:000659315800041
000903667 037__ $$aFZJ-2021-05316
000903667 082__ $$a600
000903667 1001_ $$0P:(DE-Juel1)190583$$aChen, Chenglong$$b0$$ufzj
000903667 245__ $$a3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector
000903667 260__ $$aWashington, DC$$bSoc.$$c2021
000903667 3367_ $$2DRIVER$$aarticle
000903667 3367_ $$2DataCite$$aOutput Types/Journal article
000903667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643113490_9617
000903667 3367_ $$2BibTeX$$aARTICLE
000903667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903667 3367_ $$00$$2EndNote$$aJournal Article
000903667 520__ $$aA three-dimensional (3D) printing method has been developed for preparing a lithium anode base on 3D-structured copper mesh current collectors. Through in situ observations and computer simulations, the deposition behavior and mechanism of lithium ions in the 3D copper mesh current collector are clarified. Benefiting from the characteristics that the large pores can transport electrolyte and provide space for dendrite growth, and the small holes guide the deposition of dendrites, the 3D Cu mesh anode exhibits excellent deposition and stripping capability (50 mAh cm–2), high-rate capability (50 mA cm–2), and a long-term stable cycle (1000 h). A full lithium battery with a LiFePO4 cathode based on this anode exhibits a good cycle life. Moreover, a 3D fully printed lithium–sulfur battery with a 3D printed high-load sulfur cathode can easily charge mobile phones and light up 51 LED indicators, which indicates the great potential for the practicability of lithium-metal batteries with the characteristic of high energy densities. Most importantly, this unique and simple strategy is also able to solve the dendrite problem of other secondary metal batteries. Furthermore, this method has great potential in the continuous mass production of electrodes.
000903667 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000903667 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903667 7001_ $$0P:(DE-HGF)0$$aLi, Shaopeng$$b1
000903667 7001_ $$0P:(DE-Juel1)165918$$aNotten, Peter H. L.$$b2$$ufzj
000903667 7001_ $$0P:(DE-HGF)0$$aZhang, Yuehua$$b3
000903667 7001_ $$0P:(DE-HGF)0$$aHao, Qingli$$b4$$eCorresponding author
000903667 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaogang$$b5$$eCorresponding author
000903667 7001_ $$0P:(DE-HGF)0$$aLei, Wu$$b6$$eCorresponding author
000903667 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.1c03997$$gVol. 13, no. 21, p. 24785 - 24794$$n21$$p24785 - 24794$$tACS applied materials & interfaces$$v13$$x1944-8244$$y2021
000903667 8564_ $$uhttps://juser.fz-juelich.de/record/903667/files/3D%20printed....pdf$$yPublished on 2021-05-20. Available in OpenAccess from 2022-05-20.
000903667 8564_ $$uhttps://juser.fz-juelich.de/record/903667/files/acsami.1c03997.pdf$$yRestricted
000903667 909CO $$ooai:juser.fz-juelich.de:903667$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190583$$aForschungszentrum Jülich$$b0$$kFZJ
000903667 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)190583$$a University of Science and Technology, China$$b0
000903667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165918$$aForschungszentrum Jülich$$b2$$kFZJ
000903667 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165918$$a University of Eindhoven$$b2
000903667 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000903667 9141_ $$y2021
000903667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000903667 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000903667 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000903667 920__ $$lyes
000903667 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000903667 9801_ $$aFullTexts
000903667 980__ $$ajournal
000903667 980__ $$aVDB
000903667 980__ $$aUNRESTRICTED
000903667 980__ $$aI:(DE-Juel1)IEK-9-20110218
000903667 981__ $$aI:(DE-Juel1)IET-1-20110218