| Hauptseite > Publikationsdatenbank > 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector > print |
| 001 | 903667 | ||
| 005 | 20240712112825.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.1c03997 |2 doi |
| 024 | 7 | _ | |a 1944-8244 |2 ISSN |
| 024 | 7 | _ | |a 1944-8252 |2 ISSN |
| 024 | 7 | _ | |a 2128/30545 |2 Handle |
| 024 | 7 | _ | |a altmetric:106224972 |2 altmetric |
| 024 | 7 | _ | |a pmid:34013732 |2 pmid |
| 024 | 7 | _ | |a WOS:000659315800041 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-05316 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Chen, Chenglong |0 P:(DE-Juel1)190583 |b 0 |u fzj |
| 245 | _ | _ | |a 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector |
| 260 | _ | _ | |a Washington, DC |c 2021 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643113490_9617 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A three-dimensional (3D) printing method has been developed for preparing a lithium anode base on 3D-structured copper mesh current collectors. Through in situ observations and computer simulations, the deposition behavior and mechanism of lithium ions in the 3D copper mesh current collector are clarified. Benefiting from the characteristics that the large pores can transport electrolyte and provide space for dendrite growth, and the small holes guide the deposition of dendrites, the 3D Cu mesh anode exhibits excellent deposition and stripping capability (50 mAh cm–2), high-rate capability (50 mA cm–2), and a long-term stable cycle (1000 h). A full lithium battery with a LiFePO4 cathode based on this anode exhibits a good cycle life. Moreover, a 3D fully printed lithium–sulfur battery with a 3D printed high-load sulfur cathode can easily charge mobile phones and light up 51 LED indicators, which indicates the great potential for the practicability of lithium-metal batteries with the characteristic of high energy densities. Most importantly, this unique and simple strategy is also able to solve the dendrite problem of other secondary metal batteries. Furthermore, this method has great potential in the continuous mass production of electrodes. |
| 536 | _ | _ | |a 1232 - Power-based Fuels and Chemicals (POF4-123) |0 G:(DE-HGF)POF4-1232 |c POF4-123 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Li, Shaopeng |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Notten, Peter H. L. |0 P:(DE-Juel1)165918 |b 2 |u fzj |
| 700 | 1 | _ | |a Zhang, Yuehua |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Hao, Qingli |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
| 700 | 1 | _ | |a Zhang, Xiaogang |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 700 | 1 | _ | |a Lei, Wu |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsami.1c03997 |g Vol. 13, no. 21, p. 24785 - 24794 |0 PERI:(DE-600)2467494-1 |n 21 |p 24785 - 24794 |t ACS applied materials & interfaces |v 13 |y 2021 |x 1944-8244 |
| 856 | 4 | _ | |y Published on 2021-05-20. Available in OpenAccess from 2022-05-20. |u https://juser.fz-juelich.de/record/903667/files/3D%20printed....pdf |
| 856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/903667/files/acsami.1c03997.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:903667 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)190583 |
| 910 | 1 | _ | |a University of Science and Technology, China |0 I:(DE-HGF)0 |b 0 |6 P:(DE-Juel1)190583 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165918 |
| 910 | 1 | _ | |a University of Eindhoven |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)165918 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1232 |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-30 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2019 |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|