001     903667
005     20240712112825.0
024 7 _ |a 10.1021/acsami.1c03997
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/30545
|2 Handle
024 7 _ |a altmetric:106224972
|2 altmetric
024 7 _ |a pmid:34013732
|2 pmid
024 7 _ |a WOS:000659315800041
|2 WOS
037 _ _ |a FZJ-2021-05316
082 _ _ |a 600
100 1 _ |a Chen, Chenglong
|0 P:(DE-Juel1)190583
|b 0
|u fzj
245 _ _ |a 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1643113490_9617
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A three-dimensional (3D) printing method has been developed for preparing a lithium anode base on 3D-structured copper mesh current collectors. Through in situ observations and computer simulations, the deposition behavior and mechanism of lithium ions in the 3D copper mesh current collector are clarified. Benefiting from the characteristics that the large pores can transport electrolyte and provide space for dendrite growth, and the small holes guide the deposition of dendrites, the 3D Cu mesh anode exhibits excellent deposition and stripping capability (50 mAh cm–2), high-rate capability (50 mA cm–2), and a long-term stable cycle (1000 h). A full lithium battery with a LiFePO4 cathode based on this anode exhibits a good cycle life. Moreover, a 3D fully printed lithium–sulfur battery with a 3D printed high-load sulfur cathode can easily charge mobile phones and light up 51 LED indicators, which indicates the great potential for the practicability of lithium-metal batteries with the characteristic of high energy densities. Most importantly, this unique and simple strategy is also able to solve the dendrite problem of other secondary metal batteries. Furthermore, this method has great potential in the continuous mass production of electrodes.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Li, Shaopeng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 2
|u fzj
700 1 _ |a Zhang, Yuehua
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hao, Qingli
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Zhang, Xiaogang
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Lei, Wu
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acsami.1c03997
|g Vol. 13, no. 21, p. 24785 - 24794
|0 PERI:(DE-600)2467494-1
|n 21
|p 24785 - 24794
|t ACS applied materials & interfaces
|v 13
|y 2021
|x 1944-8244
856 4 _ |y Published on 2021-05-20. Available in OpenAccess from 2022-05-20.
|u https://juser.fz-juelich.de/record/903667/files/3D%20printed....pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/903667/files/acsami.1c03997.pdf
909 C O |o oai:juser.fz-juelich.de:903667
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190583
910 1 _ |a University of Science and Technology, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)190583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165918
910 1 _ |a University of Eindhoven
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)165918
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21