

JUWELS BOOSTER EARLY EXPERIENCES CERN COMPUTE ACCELERATOR FORUM

9 June 2021 | Andreas Herten | Jülich Supercomputing Centre, Forschungszentrum Jülich

Overview

Jülich Supercomputing Centre

JUWELS Booster Overview
JUWELS Overall Architecture

Early Experiences

Previously in JUWELS

Early Access Program

Applications

Bugs

Early Results

SOMA

ParFlow

JUQCS

LQCD: Bonn

PIConGPU

Others

Pre-Training, Transfer Learning

DASO

Large-Scale MD

Summary and Conclusions

Summary

Jülich Supercomputing Centre

Forschungszentrum Jülich Germany, near Cologne, interdisciplinary research, 6400 employees

Jülich Supercomputing Centre

- Operation of supercomputers
- Education, training
- Application Support, Domain Science Support
- Research & Development

Accelerating Devices Lab Support, research, education for GPUs et al.; NVIDIA Application Lab at Jülich

Supercomputers

Production JUWELS, JURECA DC, JUSUF Prototypes JUMAX, DEEP, ...

Jülich Supercomputing Centre

Forschungszentrum Jülich Germany, near Cologne, interdisciplinary research, 6400 employees

Slide 2142

Jülich Supercomputing Centre

- Operation of supercomputers
- Education, training
- Application Support, Domain Science Support
- Research & Development

Accelerating Devices Lab Support, research, education for GPUs et al.; NVIDIA Application Lab at Jülich

Supercomputers

Production **JUWELS**, JURECA DC, JUSUF Prototypes JUMAX, DEEP, ...

JUWELS Overall Architecture

JUWELS Cluster (2018)

- 2511 compute nodes (2× Skylake)
- 48 GPU nodes (4× V100 w/ NVLink2)
- Mellanox EDR 100 Gbit/s network, fat-tree topology (1:2@L1)
- 12 PFLOP/s

JUWELS Overall Architecture

JUWELS Cluster (2018)

- 2511 compute nodes (2× Skylake)
- 48 GPU nodes (4× V100 w/ NVLink2)
- Mellanox EDR 100 Gbit/s network, fat-tree topology (1:2@L1)
- 12 PFLOP/s

JUWELS Booster (2020)

- 936 compute nodes (2× AMD Rome, 4× A100 w/ NVLink3)
- Mellanox HDR 200 Gbit/s network, DragonFly+ topology
- 73 PFLOP/s

JUWELS Overall Architecture

JUWELS Booster (2020) Top500 Nov-2020: ■ 936 compute nodes (2× AMD Rome, #1 Europe 4× A100 w/ NVLink3) #7 World Mellanox HDR 200 Gbit/s network, #1* Green500 DragonFly+ topology 73 PFLOP/s

JÜLICH Forschungszentrum

JUWELS Booster Overview

Node Configuration

Arch Atos Bull Sequana XH2000

CPU $2 \times AMD$ EPYC 7402:

 $2_{Socket} \times 24_{Core} \times 2_{SMT}$, $2 \times 256 \text{ GB DDR4-3200 RAM}$;

NPS-4

GPU 4 × NVIDIA A100 40 GB, NVLink3

73 PFLOP/s, 1.16 EFLOP/s_{FP16TC}, 18.7 EOP/s_{DinTC}

HCA 4 × Mellanox HDR200 (200 Gbit/s) InfiniBand ConnectX 6

etc 2 × PCle Gen 4 switch

Slide 4142

JUWELS Booster Overview

Network Configuration: DragonFly+ Network

In-Cell (48 nodes): Full fat-tree in 2 levels

Inter-Cell (20 cells): 10 links between each pair of cells

Member of the Helmholtz Association 9 June 2021 Slide 5142

JUWELS

Cluster Booster Integration

Fully integrated system: JUWELS with Cluster and Booster modules

• File system: GPFS

Network: InfiniBand

Workload management: Slurm

Resource management: ParaStation / ParaStation Slurm

Picture: Booster Cluster

JUWELS Software Stack

- Software
 - Software management: EasyBuild, LMod
 - Compilers: GCC, Intel, NVHPC
 - GPU-aware MPIs (ParaStationMPI, OpenMPI; via UCX)
 - $\rightarrow \ \texttt{https://apps.fz-juelich.de/jsc/llview/juwels_modules_booster/}$
- Operation
 - Operation System: CentOS 8
 - Provisioning: Ansible

Early Experiences

JUWELS Timeline

2018 JUWELS Cluster production start

2019 JUWELS Booster kick-off

2020 Apr JUWELS Booster installation start

2020 May JUWELS Booster Early Access Program first job

2020 Nov JUWELS Booster production start, first compute-time period

2021 May JUWELS Booster second compute-time period

JUWELS Timeline

2018 JUWELS Cluster production start

2019 JUWELS Booster kick-off

2020 Apr JUWELS Booster installation start

2020 May JUWELS Booster Early Access Program first job

2020 Nov JUWELS Booster production start, first compute-time period

2021 May JUWELS Booster second compute-time period

Early Access Program

- Started in early 2020
- Invited 14 applications from various scientific domains
 - Aimed for applications that could use JUWELS Booster at scale
 - Some teams already use JUWELS Cluster, others new
- Offer: Use JUWELS Booster before general access; Request: Help improve system, compute-time allocation
- Endeavor of many parts in JSC and beyond
 - NVIDIA Application Lab: Steering, GPU optimization, application support, system support
 - Application support, Simulation Labs
 - Performance Optimisation and Productivity team
 - System operations team
 - Vendors: NVIDIA, ParTec, Atos

Timeline to Booster

Preparation Timeline

Timeline to Booster

- Preparation Timeline
- Additionally: events

Applications I

Climate/Meteo/Hvdro (ESM) DeepACF * High-resolution Weather Forecast Based on Deep Learning </> Lib:DL JSC: Bing Gong, Michael Langguth, Amirpasha Mozaffari, Martin Schultz, Scarlet Stadtler ICON * Next-Generation Physical Weather and Climate Models </> OpenACC MPI Met: Luis Kornblueh: NVIDIA: **Dmitry Alexeev** MPTRAC Massive Parallel Trajectory Calculations of Volcanic Emissions </> OpenACC JSC: Sabine Grießbach, Lars Hoffmann ParFlow Surface, Soil, Ground Water Flow < CUDA C IBG-3: Jaro Hokkanen, Stefan Kollet

Biological Matter

Amber Drug Binding over Biologically Relevant
Timescales (MD) (>> Lib
SC/HHU: Holger Gohlke, Christopher
Pfleger, Michele Bonus
SCMA Winstiss of Nanomatorial Formation (Sci

U Göttingen: Ludwig Schneider, Niklas Blagojevic

Applications II

PIConGPU Plasma Simulations for Next Generation Lattice OCD Particle Accelerators (Plasma) <>> CUDA C++ Bonn Flavour Singlet Structure of Hadrons 💒 HZDR: Alexander Debus, Anton Lebedev, Lib:OUDA Rene Widera, Michael Bussmann 🕍 U Bonn: Simone Bacchio, Bartosz JUQCS-G Simulating Universal Quantum Computer Kostrzewa, Carsten Urbach (Quantum) </>
CUDA Fortarn Wuppertal SignOCD - Studying the Hottest 🕍 JSC: Hans De Raedt, Kristel Michielsen, Man-made Liquid </>
Lib:OUDA Dennis Willsch 🕍 U Wuppertal: Szabolcs Borsányi, Kalman Szabo E-train

Strain

Strai Brain (Neuro) </>
Lib:DL Bielefeld * HotQCD – Studying Extreme States of 💒 U Graz: Franz Scherr, Wolfgang Maass; U Matter </>
CUDA C++ Sussex: James Knight: INM-6: Sacha van 🐸 U Bielefeld: Christian Schmit, Dennis Albada Bollweg, Frithiof Karsch Regensburg *Barvons with Charm </>
Lib:Grid NBODY6++GPU

Pense Star Clusters and Peter Boyle, Christoph Lehner, Gravitational Waves (Astro) <> CUDA Fortran Gunnar Bali, Sara Collins W U Heidelberg: Rainer Spurzem

Applications II

PIConGPU * Plasma Simulations for Next Generation Particle Accelerators (Plasma) CUDA C++			Lattice QCD	
	HZDR: Alexander Debu	us, Anton Lebedev,	Bonn	Flavour Singlet Structure of Hadrons
JUQCS-G	* Simulating Universal (Quantum) CUDA Fort	Quantum Computer		W U Bonn: Simone Bacchio, Bartosz Kostrzewa, Carsten Urbach
				made Liquid (A Lib:OUDA
E-train	 Understanding Learning Brain (Neuro) ⟨ Lib:DL U Graz: Franz Scherr, Naussex: James Knight; INAlbada 	Wolfgang Maass; U	Bielefeld	Kalman Szabo HotQCD – Studying Extreme States of Matter CUDA C++ U Bielefeld: Christian Schmit, Dennis Bollweg, Frithjof Karsch
NBODY6+	+GPU Pense Star Clust Gravitational Waves (Ast	ro) CUDA Fortran	Regensburg	 ® Baryons with Charm ⟨⟩ Lib:Grid e Peter Boyle, Christoph Lehner, Gunnar Bali, Sara Collins

Feedback to JSC

- Performance fluctuations (GPU, node, network)
- OpenMPI segmentation violations
- NCCL hangs
- NVHPC Fortran compiler bugs
- UCX configuration (caches)
- PCIe switch bi-directional bandwidth
- PCIe device crashes
- I/O subsystem maturity

Feedback to JSC

- Performance fluctuations (GPU, node, network)
- OpenMPI segmentation violations
- NCCL hangs
- NVHPC Fortran compiler bugs
- UCX configuration (caches)
- PCIe switch bi-directional bandwidth
- PCIe device crashes
- I/O subsystem maturity

- AMD CPUs / NUMA domains
- PCle switch
- GPU device affinity
- Network design (DragonFly+)

Feedback to JSC

- Performance fluctuations (GPU, node, network)
- OpenMPI segmentation violations
- NCCL hangs
- NVHPC Fortran compiler bugs
- UCX configuration (caches)
- PCIe switch bi-directional bandwidth
- PCIe device crashes
- I/O subsystem maturity

Peculiarities

- AMD CPUs / NUMA domains
- PCIe switch
- GPU device affinity
- Network design (DragonFly+)

CPU

- AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
- Each socket built as Multi-Chip Module (chiplets)
 - 3 cores: Core-Complex (CCX), shared L3 (max 4 cores)
 - 2 CCXs: Core Complex Die (CCD)
 - 1 CCDs: 1 Quadrant (max 2 CCD per Quadrant)
 - NPS-4: 1 Quadrant = 1 NUMA domain
- Total: 8 memory channels, 2 per quadrant / NUMA domain
- PCIe lanes: 2 × 16, each 16 connected to 1 quadrant → true GPU affinity only by half of chiplets

CPU

- AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
- Each socket built as Multi-Chip Module

Affinity Not all device have affinity to each other

Rank	NUMA Domain	GPU ID	HCA ID
0	3	0	0
1	1	1	1
2	7	2	2
3	5	3	3

CPU

- AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
- Each socket built as Multi-Chip Module

Affinity Not all device have affinity to each other

Rank	NUMA Domain	GPU ID	HCA ID
0	3	0	0
1	1	1	1
2	7	2	2
3	5	3	3


```
\ srun --cpu-bind=verbose -n 2 bash -c "" | & sort cpu_bind=THREADS - jwb0001, task 0 0 [17070]: mask 0x40000 set cpu_bind=THREADS - jwb0001, task 1 1 [17072]: mask 0x40 set
```


- CPU
- AMD EPYC 7402: 24 core processor (SMT-2) × 2 sockets
- Each socket built as Multi-Chip Module

Affinity Not all device have affinity to each other

Rank	NUMA Domain	GPU ID	HCA ID
0	3	0	0
1	1	1	1
2	7	2	2
3	5	3	3

Network 20 cells: many links inside (*right*), some between (10) Bi-section bandwidth between N cells:

$$\mathcal{B}(N) = \lfloor (N/2)^2 \rfloor \times (10 \times bw_1)$$

- AMD EPYC 7402: 24 core processor (SMT-2) × 2
- Each socket built as Multi-Chip Module

Affinity Not all device have affinity to each other

Rank NUMA Domain Documented online

$$\mathcal{B}(N) = \lfloor (N/2)^2 \rfloor \times (10 \times bw_1)$$

Early Results

Early Results

Overview

- Some first results by users
- Mainly EA participants
- Most results preliminary
- Results partly on machine under construction

Early Results

SOMA

ParFlow

JUQCS

LQCD: Bonn

PIConGPU

Others

Pre-Training, Transfer Learning

DASO

Large-Scale MD

Early Results

Soft Matter: SOMA

- SOMA: Soft, coarse-grained Monte-Carlo Acceleration
 L. Schneider and M. Müller, Comput. Phys. Commun. 235C 463–476 (2019) and GPU Seminar Talk
- Kinetics of nanomaterial formation; multi-component polymer systems (battery materials, membranes, ...)
- Unique: Resolve details of polymer, but study lengths relevant to engineering
- 📸 Team: L. Schneider, N. Blagojevic, L. Pigard, M. Müller, et al
- ightarrow gitlab.com/InnocentBug/SOMA/
 - C, OpenACC, MPI
 - Frequent JUWELS user

Comparison of GPU Generations

- Long experience with various GPU architectures
- → Update to new generations early!
 - Some algorithmic changes between generations; also feature additions
 - PTPS: Particle
 Timesteps Per Second

Kernel Comparison: Memory Chart

- Many random accesses
- → Benefit from larger L1, L2 caches
- → More FP64 throughput
 - Knock-on effect: less memory traffic
 - Kernel runtime:

V100 25.8 ms A100 21.5 ms

A100*

18.9 ms

New Method for Scaling

- Scale of Booster: New algorithms, implementations with more scalability!
- New project for Booster: String Method
- String-coupled SOMA ensemble simulation
- Master thesis of N. Blagojevic

Earth-system modelling: ParFlow

Early Results

Earth-system modelling: ParFlow

 ParFlow: Numerical model for groundwater and surface water flow

J. Hokkanen, S. Kollet, et al, EGU General Assembly 2020, 4–8 May 2020, EGU2020-12904, and GPU Seminar Talk

- Model hydrologic processes, hill-slope to continental scale; forecasting, water cycle research, climate change; since 1990s
- Finite-difference scheme with implicit time integration
- 👺 Team: J. Hokkanen, S. Kollet
- ightarrow parflow.org
 - C, C++, CUDA, MPI
 - Fresh GPU port in prepartion for Booster

Earth-system modelling: ParFlow

Single-Node Performance

- Comparing CPU of Booster node with GPUs
- Good speed-up, max. 29×
- Memory pool (RMM) gives extra boost
- Larger problem sizes solvable per node

Earth-system modelling: ParFlow

Weak Scaling

- Fixed problem size per node
- 26× speed-up achieved over O(100) nodes

Early Results Juges

Quantum Computing: JUQCS

- JUQCS: Jülich Universal Quantum Computer Simulator
 De Raedt et al., Comp. Phys. Comm. 237 47-61 (2019)
- Universal quantum computing on digital computer
- Network-, memory-intensive computations
- 👺 Team: Research group Quantum Information Processing
 - Fortran, CUDA Fortran
 - Frequent JUWELS user

JUQCS

• 40 qubits:

- > 16 TiB memory needed → 512 A100s
- Each quantum operation: Update states, 8 TB transfer
- Weak scaling: Compute constant, MPI as expected
- Strong scaling: Still investigate DragonFly+ topology

JUQCS

More Weak Scaling

- Weak scaling to 2048 GPUs / 42 qubits
- Good behavior, but MPI still limiter

Early Results LQCD: Bonn

LQCD: Bonn

- ETMC: Extended Twisted Mass Collaboration
 C. Alexandrou and S. Bacchio et al. Phys. Rev. D 101 094513 (2020)
- Study of the Flavour Singlet Structure of Hadrons
- Team: S. Bacchio, B. Kostrzewa, et al; Uni Bonn, Uni Cyprus, Cyprus Institute, Uni Rome, ...

Slide 32142

- → github.com/etmc, PLEGMA, QUDA, tmLQCD
 - C/C++, CUDA, MPI, OpenMP
 - Frequent JUWELS user

LQCD: Bonn

Comparison of GPU HPC Machines

- Multigrid inversion
- Mean time-to-solution, spread
- Systems
 Piz Daint Haswell,
 P100; DragonFly
 Marconi100 POWER9,
 V100; DragonFly+
- JUWELS Booster: Low time to solution; but large spread (being investigated)

PIConGPU

Early Results

PIConGPU

- PIConGPU: Plasma simulation

 H. Burau et al, IEEE Transactions on Plasma Science 38 10 (2010)
- Particle-in-cell simulation for Exascale-level GPUs
- 🎬 Team: A. Lebedev, A. Debus, M. Bussmann, et. al
- ightarrow github.com/ComputationalRadiationPhysics/picongpu
 - C/C++, CUDA, MPI, Alpaka

PIConGPU

Results

Strong scaling for different grid sizes

Early Results

Others

Large-Scale Pre-Training on Transfer Learning for Images

Deep-Learning

- Publication: Effect of large-scale pre-training on full and few-shot transfer learning for natural and medical images
- Authors: Mehdi Cherti, Jenia Jitsev; JSC
- Status: Preprint (under review) arXiv:2106.00116 [cs.LG]

Distributed Training with DASO

Deep-Learning

- Publication: Accelerating Neural Network Training with
 Distributed Asynchronous and Selective Optimization (DASO)
- Authors: D. Coquelin et. al; KIT, DLR
 - Unique: 25 % improvement over Horovod
 - Status: Preprint arXiv:2104.05588 [cs.LG]

Large-Scale Ab-Initio Molecular Dynamics

Molecular Dynamics

- Publication: Enabling Electronic Structure-Based Ab-Initio
 Molecular Dynamics Simulations with Hundreds of Millions of Atoms
- Authors: R. Schade et. al; Paderborn University
 - Unique: FP16/FP32 mixed precision, 1536 GPUs, 324 PFLOP/s
 - Status: Preprint arXiv:2104.08245 [physics.comp-ph]

Summary and Conclusions

Summary

- JUWELS Booster: European flagship system based on A100 GPUs and HDR200 InfiniBand network
- Highly scalable system design with > 70 PFLOP/s_{FP64} compute performance and 749 Tbit/s acc. injection bandwidth
- In production since end of November, some applications earlier through Early Access Program
- First results incoming; second allocation period started

Summary

- JUWELS Booster: European flagship system based on A100 GPUs and HDR200 InfiniBand network
- Highly scalable system design with > 70 PFLOP/s_{FP64} compute performance and 749 Tbit/s acc. injection bandwidth
- In production since end of November, some applications earlier through Early Access Program
- First results incoming; second allocation period started

Appendix

Appendix Network Performance References

Appendix Network Performance

Network Performance

OSU Micro-Benchmarks: Bandwidth

- OSU Microbenchmarks: device-device bandwidth (osu bw D D)
- Good results, expected limiters
- Intra-node: NVLink3 bandwidth
- Inter-node: HDR200 bandwidth
- Model fits show2 regimes (---/ ---)

Appendix

References

References: Images, Graphics I

- [1] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Cluster.
- [2] Forschungszentrum Jülich GmbH (Ralf-Uwe Limbach). JUWELS Booster.

