000903683 001__ 903683
000903683 005__ 20240712112820.0
000903683 0247_ $$2doi$$a10.1002/elsa.202100068
000903683 0247_ $$2Handle$$a2128/31704
000903683 0247_ $$2WOS$$aWOS:001136690800017
000903683 037__ $$aFZJ-2021-05332
000903683 082__ $$a540
000903683 1001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b0$$eCorresponding author$$ufzj
000903683 245__ $$aLithium intercalation into graphite: In operando analysis of Raman signal widths
000903683 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co KGaA$$c2022
000903683 3367_ $$2DRIVER$$aarticle
000903683 3367_ $$2DataCite$$aOutput Types/Journal article
000903683 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661316518_27783
000903683 3367_ $$2BibTeX$$aARTICLE
000903683 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903683 3367_ $$00$$2EndNote$$aJournal Article
000903683 520__ $$aThe mechanism of reversible lithium intercalation in graphite anodes is still not fully understood. In operando Raman spectroscopy provides a sensitive means to monitor structural changes during the intercalation process. Analysis of the D-band to G-band intensity ratio (D/G ratio) is a common method to study the structure of carbon materials. However, this approach is complicated for the investigation of graphite anodes during battery cycling, as the D-band disappears with the onset of lithium intercalation. To circumvent this issue, the D/G ratio can be replaced by using the G-band full-width-at-half-maximum (FWHM). In this study, an investigation of the G-band FWHM during battery cell cycling is demonstrated as an alternative to monitor the intercalation of lithium into a graphite electrode. It was observed that lithium intercalation already occurs to a small extent during solid–electrolyte interphase (SEI) formation and that the formation of staged intercalation compounds leads to a continuous deformation of the boundary graphene layer.
000903683 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000903683 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000903683 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903683 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$ufzj
000903683 7001_ $$0P:(DE-Juel1)129503$$aMerz, Steffen$$b2
000903683 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3
000903683 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
000903683 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202100068$$n4$$pe2100068$$tElectrochemical science advances$$v2$$x2698-5977$$y2022
000903683 8564_ $$uhttps://juser.fz-juelich.de/record/903683/files/Electrochemical%20Science%20Adv%20-%202021%20-%20Jovanovic%20-%20Lithium%20intercalation%20into%20graphite%20In%20operando%20analysis%20of%20Raman%20signal.pdf$$yOpenAccess
000903683 909CO $$ooai:juser.fz-juelich.de:903683$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000903683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b0$$kFZJ
000903683 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169518$$aRWTH Aachen$$b0$$kRWTH
000903683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
000903683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129503$$aForschungszentrum Jülich$$b2$$kFZJ
000903683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
000903683 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b3$$kRWTH
000903683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
000903683 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
000903683 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000903683 9141_ $$y2022
000903683 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903683 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903683 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2022-11-23
000903683 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-03-11T12:17:32Z
000903683 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-03-11T12:17:32Z
000903683 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-03-11T12:17:32Z
000903683 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000903683 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000903683 920__ $$lyes
000903683 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000903683 9801_ $$aFullTexts
000903683 980__ $$ajournal
000903683 980__ $$aVDB
000903683 980__ $$aUNRESTRICTED
000903683 980__ $$aI:(DE-Juel1)IEK-9-20110218
000903683 981__ $$aI:(DE-Juel1)IET-1-20110218