000903693 001__ 903693
000903693 005__ 20240708132849.0
000903693 037__ $$aFZJ-2021-05342
000903693 041__ $$aEnglish
000903693 1001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b0$$eCorresponding author$$ufzj
000903693 1112_ $$aEuropean Fuel Cell and Hydrogen Piero Lunghi Conference$$cNapoli$$d2021-12-15 - 2021-12-17$$gEFC21$$wItaly
000903693 245__ $$aFabrication and upscaling of anode supported proton conducting ceramic cells in planar design
000903693 260__ $$c2021
000903693 3367_ $$033$$2EndNote$$aConference Paper
000903693 3367_ $$2DataCite$$aOther
000903693 3367_ $$2BibTeX$$aINPROCEEDINGS
000903693 3367_ $$2DRIVER$$aconferenceObject
000903693 3367_ $$2ORCID$$aLECTURE_SPEECH
000903693 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1640175297_7622$$xAfter Call
000903693 500__ $$aFunding from BMBF, Germany (Grant Nr.: 03SF0537A,C) is gratefully acknowledged. Mrs. A. Lewalter, PtJ, Jülich is specially acknowledged for her engagement and guidance throughout the duration of the project. Kerafol-Keramische Folien GmbH & Co. KG, Eschenbach, Germany and Morgan Advanced Materials Haldenwanger GmbH, Waldkraiburg, Germany are highly acknowledged for their engagement and support. We thank J. Deuschle, A. Fuchs, H. Hoier (MPI FKF Stuttgart) and Y.-J. Sohn (IEK-1, Forschungszentrum Jülich GmbH) for performing the SEM-EDX and XRD studies.
000903693 520__ $$aProtonic ceramic fuel cells offer a high potential to produce electrical energy in a very efficient way. The performance of such devices is highly dependent on the electrolyte material and its thickness. In this work half-cell assemblies, consisting of Ba1.015Zr0.625Ce0.2Y0.175O3-δ electrolyte layer (final thickness ≤ 15 µm) supported on much thicker porous cermet Ba1.015Zr0.625Ce0.2Y0.175O3-δ:Ni anode (final thickness 350-700 µm), were developed via the inverse tape casting processing technique. Powders were prepared by the solid state reactive sintering and NiO was added to the electrolyte powder sintering aid facilitating sintering. The chemical composition and the physical characteristics of the starting powders were thoroughly analyzed and by need, adjusted to the tape casting fabrication process. The shrinkage rates of electrolyte and anode substrate single layers, as well as of the assemblies thereof were explored by optical dilatometry in order to optimise the de-binding and sintering procedures. Sintering experiments carried out at different heating regimes showed that to achieve the desired half-cell microstructure, including electrolyte gas tightness and flat reproducible geometry of the assemblies, sintering temperature of 1450°C was optimally required. The influence of the processing and sintering parameters on the final cell microstructure was investigated in details by XRD and SEM-EDX studies. The formation of BaY2NiO5 transient liquid phase during the sintering was confirmed. The tape-cast cells were electrochemically characterized after anode support reduction and the proton conductivity of the electrolyte was 0.003 S/cm at 600°C, which is comparable to the literature data. Finally, half-cell assemblies were successfully scaled-up to 25 cm2 area. Finally, this work demonstrates two key results: (i) the combination of tape casting and reactive sintering is able to produce large-area electrolyte-anode assemblies for a comparably low Ce content of 20 mol.% and ii) the achieved total proton conductivity is suitable for PCFC application.
000903693 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000903693 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000903693 536__ $$0G:(BMBF)03SF0537A$$aVerbundvorhaben ProtOMem: Entwicklung von protonenleitenden Membranen mit optimierter Mikrostruktur und verbesserten Transporteigenschaften für Energie- und Wasserstoffseparationsanwendungen (03SF0537A)$$c03SF0537A$$x2
000903693 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x3
000903693 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000903693 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000903693 7001_ $$0P:(DE-Juel1)144923$$aDeibert, Wendelin$$b1$$ufzj
000903693 7001_ $$0P:(DE-HGF)0$$aHuang, Yuanye$$b2
000903693 7001_ $$0P:(DE-HGF)0$$aMerkle, Rotraut$$b3
000903693 7001_ $$0P:(DE-HGF)0$$aMaier, Joachim$$b4
000903693 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, Wilhelm Albert$$b5$$ufzj
000903693 909CO $$ooai:juser.fz-juelich.de:903693$$pVDB
000903693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b0$$kFZJ
000903693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144923$$aForschungszentrum Jülich$$b1$$kFZJ
000903693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129637$$aForschungszentrum Jülich$$b5$$kFZJ
000903693 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000903693 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000903693 9141_ $$y2021
000903693 920__ $$lyes
000903693 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000903693 980__ $$aconf
000903693 980__ $$aVDB
000903693 980__ $$aI:(DE-Juel1)IEK-1-20101013
000903693 980__ $$aUNRESTRICTED
000903693 981__ $$aI:(DE-Juel1)IMD-2-20101013