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Generalization failure of RSFC-based behavioral prediction in non-European pediatric population

Machine learning is expected to play a 
crucial role in precision medicine, yet 
algorithmic biases towards majority 
populations may pose a key challenge 
towards this goal (Chouldechova 2018; 
Martin 2019; Obermeyer 2019). In the 
neuroimaging community, one major line of 
research is to predict individual’s 
phenotypes from resting-state functional 
connectivity (RSFC; Finn 2015; Kong 2019; 
Wu 2020). In that context, predictive 
models are typically built by capitalizing on 
large cohorts in which the proportions of 
certain ethnical groups, e.g. African 
Americans (AA), are limited. 

To evaluate cross-population 
generalizability of the current, field-standard 
approach in pre-adolescent populations, we 
here compared predictive models of 
behavioral data between phenotypically 
matched AA and white American (WA) 
samples in the Adolescent Brain Cognitive 
Development (ABCD) dataset. When 
predictive models were trained on the entire 
sample, out-of-sample prediction errors 
were generally higher in AA than WA. This 
bias towards WA corresponds to more WA-
like brain-behavioral association patterns 
learned by models. When models were 
trained on AA only, compared to training 
only on WA or an equal number of AA and 
WA participants, AA prediction accuracy 
improved but stayed below that for WA.

Introduction Methods Out-of-sample prediction accuracies biased towards WA
Ø Dataset: Adolescent Brain Cognitive Development (ABCD; Volkow 2018; Garavan 2018) (Age: 

9-11y, N = 5351, incl. 635 African Americans, 2999 White Americans, 36 behaviors)
Ø RSFC preprocessing (Chen 2020): 

Ø RSFC across 400 cortical (Schaefer 2018) & 19 subcortical (Fischl 2002) ROIs.
Ø AA & WA were matched for age, gender, FD, DVARS, intracranial volume (ICV), parental 

education & behavioral scores.
Ø Number of matched pairs of AA and WA ranged from 192 to 301 across behaviors .

• No significant difference in confounding and behavioral variables was found 
between matched AA and WA (FDR q < 0.05).

• Confounding variables (age, gender, FD, DVARS, ICV, parental education) were 
regressed from behavioral scores before building predictive models. Data leakage 
from training to test sets were prevented.

• Most predictable behavioral measures1 showed significantly higher prediction 
accuracy in matched WA than AA2.

1. When predictive models were trained on entire sample 
(dominated by WA), significantly lower out-of-sample 
accuracies in AA than WA were observed for most predictable 
behavioral measures.
The results replicated our previous study on young, healthy 
adults using the Human Connectome Project dataset (Li 2020).

2. The observed bias in model performance was related to the 
similarity between model-learned brain-behavioral association 
(BBA) patterns and the actual BBA patterns in different 
ethnic/racial groups.
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Ø Kernel ridge regression (Kong 2019; Li 2019; He 2020):
Ø The behavior of a test subject is more similar to the behavior of a training subject if their 

brain organizations are more similar.
Ø Inter-subject similarity (i.e. kernel): correlation of subjects’ RSFC matrices.
Ø 120 variations of cross-validated training-test data split.

Ø Accuracy metrics:
Ø Predictive COD (AA as example, similar for WA): !"#$%% = 1 − ))*++

)),++&.+
, where

//0%% = ∑ AA test predicted score − AA test true score =

//>%%&?% = ∑ matched AA&WA training true score − 0 matched AA&WA training true score =

Assumption: total data variance is not group specific
Ø Pearson’s correlation

Ø Brain-behavioral association (BBA; Haufe 2014)
Ø Model-learned BBA: covariance[RSFC, predicted behavioral scores] across training subjects
Ø True BBA in each ethnic/racial group (either AA or WA): covariance[RSFC, true behavioral 

scores] across test subjects in that group.

1 “Predictable behavior” satisfied 3 conditions: (1) Pearson’s correlation accuracy of all test subjects > 
0.15 (2) survived the permutation test by shuffling the predicted scores across all test subjects (FDR q < 
0.05); (3) prediction accuracy is positive in either AA or WA.
2 AA vs WA accuracy difference tested by randomly shuffling AA/WA labels 1000 times, FDR q < 0.05
* AA vs WA accuracy difference were significant.
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Matched AA Matched WA ① : For each site, select the pairs of AA & WA 
which were matched in the confounding and 
behavioral variables. The matching was 
performed at the subject level, rather than the 
group level.
② : Merge 19 sites into 10 sets so that # matched 
AA were as balanced as possible across sets.
③ : Select 3 sets as test folds (red bounding 
box), the remaining 7 sets as training folds, 
yielding 120 possible data splits.

• When the same confounding variables were regressed from RSFC, similar 
conclusion can be drawn.

(1) All AA; 
(2) Randomly selected WA with the same sample size as (1); 
(3) Combination of (1) & (2)

Test sets were the same with previous section (i.e. matched AA &WA).

• Across all 36 behavioral measures, accuracies of AA became less disadvantaged when models 
were trained solely on AA, compared to the other two types of models.

• However, training solely on AA did not eliminate the accuracy differences between AA and WA.

Models learned brain-behavioral association patterns more similar to true 
patterns of WA than that of AA
Behavioral measures showing more similar model-learned 
BBA patterns and actual BBA patterns in one ethnic/racial 
group than the other tended to have greater accuracy in the 
same group (#purple+#blue > #pink+#orange).

3. Training solely on AA could benefit the prediction in AA,
compared to specific training on only WA.
However, some significant AA-WA differences in the test 
accuracies were still observed.

4. The above observation raised further questions on other 
possible factors contributing to the difference in prediction 
difference which need future investigations, e.g. choice of 
brain templates during preprocessing, validity of 
psychometric data in minority ethnic/racial groups (Gould 
1996).

5. Call for data collection from non-European descended 
populations: most of current large-scale neuroimaging +
behavior datasets are dominated by European/white subjects. 
E.g. UK Biobank, the currently largest dataset, only contains 
1% Asian British (N~=300, the largest non-European/white 
group) with both fMRI and behavioral data.

6. Given complicatedly entangled nature and nurture in present 
data, this study should not be interpreted as identifying 
neurobiological and neuropsychological differences across 
groups which would potentially lead to more discriminations.


