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Introduction Methods Out-of-sample prediction accuracies biased towards WA Effects of training population

Machine learning is expected to play a > Dataset: Adolescent Brain Cognitive Development (ABCD; Volkow 2018; Garavan 2018) (Age: » No significant difference in confounding and behavioral variables was found Train predictive models only on: (1) All AA;
crucial role in precision medicine, yet 9-11y, N = 5351, incl. 635 African Americans, 2999 White Americans, 36 behaviors) between matched AA and WA (FDR q < 0.05). B \WA better than AA (2) Randomly selected WA with the same sample size as (1);

algorithmic biases towards majority > RSFC preprocessing (Chen 2020): C : : . AA better than WA o
. . . » Confounding variables (age, gender, FD, DVARS, ICV, parental education) were o . (3) Combination of (1) & (2)
m R i R N f diff
populations may pose a key challenge » RSFC across 400 cortical (Schaefer 2018) & 19 subcortical (Fischl 2002) ROls. regressed from behavioral scores before building predictive models. Data leakage o significant difference

towards this goal (Chouldechova 2018; » AA & WA were matched for age, gender, FD, DVARS, intracranial volume (ICV), parental

Martin 2019; Obermeyer 2019). In the education & behavioral scores. . . o . o
« Most predictable behavioral measures’ showed significantly higher prediction model model

Number ot behaviors i
|
neuroimaging community, one major line of » Number of matched pairs of AA and WA ranged from 192 to 301 across behaviors . _ :
accuracy in matched WA than AAZ2. Random-WA . Random-WA
|
|

from training to test sets were prevented. 0 5 10 15 20 25 30 35
All-AA All-AA

Number of behaviors
10 15 20 25 30 35

research is to predict individual's B Matched AA 19 sites Matched WA (1) : For each site, select the pairs of AA & WA | model model

phenotypes from resting-state functional i — which were matched in the confounding and [ WA [ Difference Combined Combined

connectivity (RSFC; Finn 201 5;. K_Ong 2019; behavioral Variables..The matching was 0.8- Acc = predictive COD Acc = Pearson's correlation
Wu 2020). In that Contgxt, predlc.:tlvle. performed at the subject level, rather than the Test sets were the same with previous section (i.e. matched AA &WA).

models are typically built by capitalizing on 4 ‘ group level.

large cohorts in which the proportions of (2 : Merge 19 sites into 10 sets so that # matched
certain ethnical groups, e.g. African AA were as balanced as possible across sets.
Americans (AA), are limited. 120 splits {-:I [ | I I} (3 : Select 3 sets as test folds (red bounding

Z

0.6 -

0.4- T » Across all 36 behavioral measures, accuracies of AA became less disadvantaged when models
were trained solely on AA, compared to the other two types of models.

« However, training solely on AA did not eliminate the accuracy differences between AA and WA.

0.2

o__

02] - | C | Models learned brain-behavioral association patterns more similar to true
04- _ L2 M patterns of WA than that of AA

Behavioral measures showing more similar model-learned Color code Similarity(learned vs true BBA):

' i . e . . : BBA patterns and actual BBA patterns in one ethnic/racial WA > AA AA > WA
matched AA and white American (WA) > Inter-subject similarity (i.e. kernel): correlation of subjects’ RSFC matrices. groug than the other tended tophave greater accuracy in the  Accuracy:significantwa>aa | [N —

samples in the Adolescent Brain Cognitive > 120 variations of cross-validated training-test data split. & @ ' ~ 3 S ’ Accuracy: significant AA > WA e
Development (ABCD) dataset. When > Accuracy metrics: J P N &8 A © SRR same group (#purple+#blue > #pink+#orange). Accuracysno significant difference

predictive models were tra'r?e‘?' on the entire » Predictive COD (AA as example, similar for WA): pCOD4, =1 — >obaa , where > . $° 3 W Predictive III IIIII IIIII III II IIIIII I
sample, out-of-sample prediction errors SST ppsw A CoD

e i | IR RS- e~y L
bias towards WA corresponds to more WA- SSTyazawa = ¥ (matched AA&WA training true score — E[matched AA&WA training true score])? redictable behavior” satisfied 3 conditions: (1) Pearson’s correlation accuracy of all test subjects correlation
\0

To evaluate cross-population (choose 3 box), the remaining 7 sets as training folds,
from 10) yielding 120 possible data splits.

generalizability of the current, field-standard B ] - I T e |

approach in pre-adolescent populations, we | 5. Kernel ridge regression (Kong 2019; Li 2019; He 2020):

here compared predictive models of > The behavior of a test subject is more similar to the behavior of a training subject if their
behavioral data between phenotypically brain organizations are more similar.

Cross-validated predictive COD

Cross-validated Pearson’s correlation 53

, _ , o . . . . 0.15 (2) survived the permutation test by shuffling the predicted scores across all test subjects (FDR g <
like brain-behavioral association patterns Assumption: total data variance is not group specific 0.05); (3) prediction accuracy is positive in either AA or WA.

learned by models. When models were > P_earson S c_:orrelatlon o 2 AA vs WA accuracy difference tested by randomly shuffling AA/WA labels 1000 times, FDR q < 0.05
trained on AA only, compared to training » Brain-behavioral association (BBA; Haufe 2014)

only on WA or an equal number of AA and » Model-learned BBA: covariance[RSFC, predicted behavioral scores] across training subjects
WA participants, AA prediction accuracy » True BBA in each ethnic/racial group (either AA or WA): covariance[RSFC, true behavioral

improved but stayed below that for WA. scores] across test subjects in that group.

* AA vs WA accuracy difference were significant.

* When the same confounding variables were regressed from RSFC, similar
conclusion can be drawn.
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