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1 Abstract 

Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial 
processes involving biocatalysts, but often reduce enzyme activity. Experimental and 
computational methods are applied to predict favorable substitution sites and, most often, 
subsequent site-directed surface charge modifications are introduced to enhance enzyme 
resistance towards aIL. However, almost no studies evaluate the prediction precision with 
random mutagenesis or the application of simple data-driven filtering processes. Here, we 
systematically and rigorously evaluated the performance of 22 previously described structure-
based approaches to increase enzyme resistance to aIL based on an experimental complete site-
saturation mutagenesis library of BsLipA screened against four aIL. We show that, surprisingly, 
most of the approaches yield low gain in precision (GiP) values, particularly for predicting 
relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, 
exploiting experimental information on the thermostability of BsLipA or structural weak spots 
of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and 
GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute 
physicochemical and evolutionary properties substantially increases the precision of predicting 
relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these 
properties with predictions of structural weak spots identified by rigidity theory additionally 
improves GiP for relevant positions up to 4-fold to ~10 and sustains or increases GiP for 
relevant positions, resulting in a prediction precision of ~90% compared to ~9% in random 
mutagenesis. This combination should be applicable to other enzyme systems for guiding 
protein engineering approaches towards improved aIL resistance. 
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2 Introduction 

With the world population continuing to increase 1, studies forecast a shortage of natural 
resources, such as fresh water 2 and fossil fuels 3, 4. Green industrial processes, such as the 
enzymatic production of biofuel and other valuable products from abundantly available plant 
material, attempt to solve these problems 5-11. However, in particular, current biofuel production 
uses environmentally unfriendly acid catalysis and requires large amounts of freshwater for the 
reaction workup 12-14. Consequently, environmentally friendly alternatives to produce biofuel 
are needed. Ionic liquids (IL) are attractive solvents for this, as some IL dissolve cellulosic plant 
material without the need for heat activation or pretreatment using solvents such as strong acids 
or carbon disulfide 12, 15. While pure IL often result in enzyme activities impractical for 
industrial processes 16-20, IL-pretreated holocellulose retains a high digestibility for enzymes 
after recrystallization in water 21. Aqueous ionic liquids (aIL), e.g., the remnants of IL in 
recrystallized holocellulose, show a reduced yet still marked impact on enzymatic activity 22, 23. 
Hence, for using aIL in green industrial processes, it is of utmost importance to understand how 
aIL affect enzyme stability and activity and to use this knowledge to improve enzyme resistance 
against these solvents.  
To improve enzyme resistance to aIL, studies frequently relied on straightforward and well-
established approaches, such as directed evolution 24, 25, to generate aIL-resistant enzyme 
variants 26-28. The low experimental efforts, however, come with the drawback that mutations 
are randomly generated (albeit this can be directed to a certain degree using, e.g., modified 
polymerases), leading predominantly to minor changes in the protein 29 and often incomplete 
coverage of the sequence and position space 30. More recently, approaches to increase aIL 
resistance transposed towards data-driven protein engineering approaches, which rely on prior 
knowledge to improve specific enzyme properties by introducing changes at distinguished 
sequence positions and can cover the whole sequence space. Here, variant libraries are designed 
by predicting advantageous positions based on, e.g., structure 31-35 or consensus information 36-

39 or by predicting substitutions (exchanges of an amino acid to a different amino acid due to a 
mutation in the corresponding DNA sequence) at distinct positions with a specific goal in mind, 
e.g., in disulfide bond engineering 40 or surface charge modification approaches 17-20, 41-44. 
Surface charge modification, in particular, is a widely proposed approach to increase aIL 
resistance following the rationale that introducing charged, ion-repelling substitutions at the 
protein surface can prevent aIL interactions with enzymes and their subsequent effects 17-20, 41, 

44-46. Over the years, this approach became noticeably more specific, as it evolved from a global 
chemical modification of all lysine residues of a protein 18-20 over fractional substitutions of 
lysine residues 41 to an NMR-based site-specific approach targeting distinguished positions 
around perturbed protein residues 17. However, the lack of available, systematic large-scale data 
prevented evaluating the performance of such approaches against random mutagenesis or 
simple structure-based guidelines. 
For the model enzyme BsLipA, a complete site-saturation mutagenesis library (termed “BsLipA 
SSM library” hereafter) is available that covers all 3620 potential single substitutions with 
natural amino acids (181 substitution sites with 20 possible substitutions at each site) 16. The 
BsLipA SSM library was screened towards thermostability 33, resistance to four detergents 33, 

47 resistance to three organic solvents 30, and aIL resistance to four imidazolium-based aIL 
(0.9 M 1-butyl-3-methylimidazolium bromide ([BMIM/Br]), 1.2 M 1-butyl-3-
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methylimidazolium chloride ([BMIM/Cl]), 0.6 M 1-butyl-3-methylimidazolium iodide 
([BMIM/I]) and 0.7 M 1-butyl-3-methylimidazolium trifluoromethanesulfonate 
([BMIM/TfO])) 16. The concentrations of the individual aIL were chosen to result in residual 
activities of 30-40% with respect to the activity in buffer to allow for relative comparisons 
between the aIL 16. BsLipA is particularly interesting for that, as it is a small lipase and does 
not show interfacial activation, but has often been used in similar experimental and 
computational studies 16, 17, 33, 43-45, 48, 49, and high-resolution X-ray crystal structures 
(PDB ID: 1I6W 50 and 1ISP 51) are available. 
An initial analysis of the BsLipA SSM library showed that more than half of all amino acid 
positions contribute to IL resistance of BsLipA. It further revealed substitution patterns at which 
presumably high fractions of aIL-resistant variants occur, e.g., for substitutions at specific 
secondary structure elements 16 or substitutions to chemically different amino acids 16. 
Subsequent studies based on the BsLipA SSM library proposed surface charge-engineering and 
increasing the substrate cleft polarity to improve aIL resistance 16, 45, 49. However, in these cases, 
the results were not related to a priori probabilities, such that the performance of these 
guidelines for suggesting aIL-tolerant variants may be overrated (see also below). 
A previous large-scale analysis of the BsLipA SSM library with respect to thermostability and 
detergent resistance revealed significant improvements in prediction accuracy compared to 
random mutagenesis for a data-driven structural stability-based approach 33. Additionally, data 
mining of the BsLipA SSM library 30, 33 and another large-scale library 52 showed that applying 
simple physicochemical properties to predict substitutions, such as the solvent-accessibility 
(SA) or the change in unfolding free energy (ΔΔGunf), increases the prediction accuracy for 
thermostability or detergent resistance 30, 33, 52. Hence, the BsLipA SSM library offers a unique 
opportunity to evaluate the performance of commonly applied approaches to increase aIL 
resistance towards their prediction accuracy of beneficial substitutions and substitution sites. 
Furthermore, the BsLipA SSM library can be used to systematically evaluate new guidelines 
aiming at a time- and cost-efficient knowledge-driven protein engineering towards aIL 
resistance.  
In this work, we show for the BsLipA SSM library that the prediction accuracy of commonly 
used approaches and guidelines to improve aIL resistance of enzymes is surprisingly low. We 
apply rigorous binary classifiers and report the results relative to performing unbiased random 
mutagenesis for evaluation. This way, we account for a priori probabilities. Furthermore, we 
introduce a rational approach that outperforms currently applied approaches, can be computed 
within a few hours, and only requires a protein structure as input. 
 

3 Results 

3.1 In Total, 9% of All Variants Show Significantly Increased aIL 
Resistance, and 57% of All Positions Harbor Such Variants 

In total, the BsLipA SSM library contains 3620 variants at 181 positions that were tested for 
residual activity (RAaIL; Eq. S1) in 0.9 M [BMIM/Br], 1.2 M [BMIM/Cl], 0.6 M [BMIM/I], 
and 0.7 M [BMIM/TfO] and subsequently assessed concerning the variance of the data and 
significance of changes (see section 3.1 in Supplementary Information) 16. The aIL resistance 
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of a variant was considered significantly improved when RAvariant,aIL ≥ RAwildtype,aIL + 3 σaIL, 
with RAvariant,aIL and RAwildtype,aIL being the RAaIL of the variant in aIL and buffer, respectively, 
and σaIL being the standard deviation of the assay in the respective aIL 16. 3 σaIL was chosen 
because it corresponds to a p-value below 0.01, assuming a Gaussian distribution of the RAaIL. 
Throughout this study, variants with significantly improved aIL resistance and positions 
harboring such substitutions will be termed “relevant variants” or “relevant positions”. A 
graphical representation of the BsLipA variant distribution of variants and positions is shown 
in Figure 1. 
Averaged over all four aIL, only 9% of all substitutions (310 variants) yielded relevant variants 
([BMIM/Br]: 8% or 263 variants; [BMIM/Cl]: 13% / 462; [BMIM/I]: 6% / 206; [BMIM/TfO]: 
9% / 292). This proportion (9%) represents the chance of finding relevant variants using 
unbiased random mutagenesis, e.g., by error-prone PCR (epPCR) with equal probabilities for 
all variants; experimental biases, such as the preference of Taq polymerase 53 in epPCR for 
AT → GC transitions, are thus not considered 54. This value will subsequently be used in our 
analyses to evaluate the performance of approaches to predict relevant variants. The percentage 
of relevant variants is comparable to that obtained for detergent resistance (~12%) 33, 47. The 
slightly lower percentage for aIL may be due to using 3 σaIL as a limit to define significance, 
whereas 2 σD was used in the case of detergents 33, 47. The conservative limits are used to 
counterbalance experimental uncertainties in the RAaIL that originate from enzyme activities 
measured in the supernatant 16, which may be influenced by differences in thermodynamic or 
kinetic protein stability 34, 55 or protein expression 56. The RAaIL distributions for the four aIL 
are shown in Figure S1.  
In contrast, more than half of all substitution sites (57% or 103 positions) harbored such relevant 
variants ([BMIM/Br]: 50% or 91 positions; [BMIM/Cl]: 69% / 124; [BMIM/I]: 52% / 95; 
[BMIM/TfO]: 57% / 104). Interestingly, almost half of all BsLipA positions (89 positions) 
yield relevant variants in three or more aIL, and only ~20% (39 positions) yield variants that 
are not improved in any aIL (Figure 1C/D).Thus, more than twice the number of positions in 
BsLipA yield relevant variants compared to detergent resistance (~27%) 33. This proportion 
(57%) represents the chance of finding a position that harbors relevant variants using unbiased 
random mutagenesis and will subsequently be used in our analyses to evaluate the performance 
of approaches to predict relevant positions. Here, the majority of the positions yields less than 
one aIL resistant variant, and few positions yield multiple (> 4) aIL resistant variants 
(Figure 1A/B). Hence, in BsLipA, each of the 103 relevant positions yields on average three 
relevant variants out of 20 possible substitutions. When using unbiased random mutagenesis, 
the experimental effort to identify 10 unique relevant variants or positions on average sums up 
to screening ~117 and ~18 variants, respectively. 
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Figure 1: Distributions of relevant variants and positions for the four aIL in the BsLipA 
SSM library. Data is analyzed by focussing on relevant variants (A-B) and relevant positions 
(C-E). (A) The average number of relevant variants per position is mapped onto the BsLipA 
structure with blue (red) color depicting a low (high) amount of variants per position. The 
catalytic site residues S77, D133, and H156 are depicted as sticks and colored in green. (B) 
Average number of relevant variants per position. The majority of the positions yields less than 
one aIL resistant variant, and few positions yield multiple (> 4) aIL resistant variants. (C) 
Number of positions that are relevant in n = 0 to 4 aIL. Almost half of all BsLipA positions 
(89 positions) yield relevant variants in three or more aIL, and only ~20% (39 positions) yield 
variants that are not improved in any aIL. (D) Data of (C) mapped onto the BsLipA structure 
with colors depicting the number of aIL (white: 0; light blue: 1; blue: 2; magenta:3; red:4). The 
catalytic site residues S77, D133, and H156 are depicted as sticks and colored in green. 
 
3.2 Definition of Measures for Evaluating the Predictive Power of 

Approaches 

We defined two measures to evaluate the performance of a given approach for improving aIL 
resistance on the BsLipA SSM library based on binary classification: the gain-in-precision (GiP, 
Eq. S3, 57) on a variant-wise level (GiPvar) and the gain-in-precision on a positional level 
(GiPpos). The GiPvar and GiPpos describe the relative likelihoods to correctly predict relevant 
variants or relevant positions compared to unbiased random mutagenesis. Note that GiP is not 
affected by data prevalence and data imbalance, in contrast to other measures of binary 
classification, such as accuracy 58, which is important in view of the underrepresentation of 
relevant variants. Note, too, that we focus on precision and not recall 57 because, for our 
application, it is more important to have a high fraction of correctly classified instances among 
those classified relevant than to have high coverage of the relevant class: Substantially 
improved enzyme variants often incorporate only a few (1-3) substitutions 59-62, and additional 
substitutions do not easily lead to further improvements, particularly when they are 
interacting25. This is because the majority of substitutions destabilize an enzyme, limiting the 
way how substitutions are combinable 46, 59, 63-66. Furthermore, despite state-of-the-art high-
throughput selection 67-70 and screening 71-73 techniques, protein engineering approaches are still 
limited to a small number of positions if the whole sequence space shall be investigated, as the 
library size increases exponentially (combining all possible substitutions at, e.g., six positions 
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already leads to 206 = 6.4ꞏ107 variants) 74. Hence, identifying a few relevant variants and 
positions is necessary and sufficient for most protein engineering approaches. 
Because our analysis is focused on general applicability towards several aIL instead of 
individual solvents, the GiP values are averaged over the four aIL of the BsLipA SSM library. 
Yet, to provide an estimate of the data variance, the ranges of the numbers of relevant variants 
and positions, and the relations to the total considered variants and positions, are presented 
across the four aIL (Table 1, Table S1). Finally, we performed a Boschloo’s ‘exact’-test to 
determine if the observed populations of relevant variants and positions of a given approach 
were significantly different (p ≤ 0.05) from those of random mutagenesis 75. Here, we assessed 
the p-value of the test statistics regarding the populations of relevant variants or positions versus 
not-relevant variants or positions compared to random mutagenesis, which describes the 
probability of finding a sample statistic as extreme as the test statistics. Unless all p-values are 
< 0.05, the lowest and highest p-values observed over the four aIL are shown in Table 1 and 
Table S1.  
 

3.3 Assessment of Commonly Applied Approaches to Improve aIL 
Resistance 

We extracted 22 approaches to improve enzyme resistance towards aIL from the literature and 
evaluated their performance to improve aIL resistance using the above-defined measures 
(Table S1). These approaches can be classified into six groups (Figure 2): 
I) approaches that determine relevant positions from experimental structural data for the system 
(A1-A5);  
II) approaches that determine relevant positions from extensive computations (A6-A11);  
III) approaches that determine relevant positions from experimental biochemical data on other 
“environmental” effects, such as temperature or solvents with detergents (A12-A13);  
IV) one approach where relevant positions are determined as structural weak spots by rigidity 
theory without considering specific aIL effects (A14);  
V) approaches that modify surface charges (A15-A20);  
VI) two approaches that did not consider a priori information (A21-A22). 
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Figure 2: Overview of evaluated structure-based approaches described in the literature 
for improving aIL resistance. The classification of the approaches (I-VI) is described in the 
text. Most approaches rely on analyzing direct protein-aIL interactions (A1-A7), whereas only 
a few investigate subsequent effects of the aIL interactions on the protein (A8-A11).  

 
We will summarize the results for the approaches of each group here (Table 1). For detailed 
information on each approach, see the Supporting Information and Table S1. 
Group I: Approaches A1 and A2 used binding sites identified from X-ray crystal structures of 
BsLipA in the presence of aIL, which were subsequently refined by molecular dynamics (MD) 
simulations. Approaches A3-A5 used two-dimensional 15N/1H HSQC NMR experiments to 
identify positions that experienced perturbations in their local chemical environment upon 
incubation in [BMIM/Cl]. In both cases, a similar number of relevant sites (23 to 24) were 
predicted. These sites overlap to a low degree between the approaches (26% of A1-A2 sites are 
found in A3-A5 and 25% vice versa), but to a high degree with the BsLipA SSM library 
reference data (74% and 80%). For specific changes to charged amino acids, in either subgroup, 
high GiPvar values of ~2.2 to 2.5 are associated with low GiPpos values (~0.3 to 0.5), indicating 
that such charge changes are effective at the predicted relevant sites with ~1/3 to ½ of the 
precision of random mutagenesis only. In turn, moderate GiPvar (≤ 1.8) and GiPpos (≤ 1.2) values 
are obtained if substitutions to all amino acids are evaluated. I.e., GiPvar = 1.79 and GiPpos = 1.2 
in approach A2 indicate that ~65 and ~15 variants have to be screened to obtain ten relevant 
variants and positions, respectively, compared to ~118 and ~18 when using random 
mutagenesis.  
Group II: In approaches A6 and A7, we identified aIL binding sites of BsLipA from extensive 
MD simulations using distance-based interaction criteria and evaluated the 20 most occupied 
positions for each solvent 43. The identified sites showed a low to moderate overlap with binding 
sites of A1-A2 (41% and 26% for A6 and A7, respectively) and A3-A5 (18% and 21% for A6 
and A7, respectively), but a high overlap with the BsLipA SSM library reference data (73% and 
85%). However, similar to A1 and A3-A4, specific changes to positively (negatively) charged 
amino acids for cation (anion) binding sites yielded moderate GiPvar of ~1.3 but substantially 
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lower GiPpos values (~0.3), again indicating a low precision for such predicted relevant sites 
compared to random mutagenesis in the context of charge changes. 
In approaches A8-A11, we assessed whether predictions based on aIL-induced local structural 
stability changes, identified using either MD simulations (A8-A9) or the rigidity theory-based 
Constraint Network Analysis (CNA) (A10-A11), lead to increased GiP values. Introducing 
charged amino acids at solvent-exposed positions (A8 and A10) yielded high GiPvar ≈ 2 but 
again low GiPpos ≈ 0.75 values. In turn, considering substitutions to all amino acids at positions 
irrespective of the solvent exposure (A9 and A11) yields moderately increased GiPvar (~1.35) 
and GiPpos (~1.15) values. Notably, the results are comparable to predictions from A1-A5, 
indicating that computational approaches predict relevant variants and positions with similar 
precision as experiment-based ones without the need for cost- and time-intensive experiments. 
Group III: Approaches A12 and A13 probe to what extent knowledge of relevant positions 
gained from optimizing BsLipA against temperature or detergent influence can be transferred 
to increasing aIL resistance. In the latter case (A13), only moderate GiPvar (1.56) and GiPpos 
(1.20) are obtained. In the former case (A12), however, the highest GiPvar = 3.03 and 
GiPpos = 1.61 of all tested approaches are obtained. 
Group IV: Approach A14 assesses whether structural weak spots of the BsLipA structure 
identified with the rigidity theory-based Constraint Network Analysis method are relevant 
positions. Contrary to A11, weak spots were identified based on structural ensembles of BsLipA 
generated in water only and determined from phase transitions upon thermal unfolding. With 
this approach, the highest GiPpos = 1.41 among all evaluated computational approaches is 
obtained, and the fifth-highest GiPvar = 2.39 among all evaluated experimental and 
computational approaches. Note that for groups III and IV, the number of predicted relevant 
positions is low (6 to 11), which facilitates identifying beneficial substitution combinations 
later. However, the number of variants is still high because we evaluate substitutions to all 
amino acids. Hence, further rules are needed to limit the substitution possibilities (see below). 
Group V: Approaches A15 – A20 comprise surface charge modifications irrespective of 
identifying aIL interaction sites or changes in structural stability due to aIL beforehand. The 
underlying principle is to repel like-charged solvent molecules by introducing either positively 
(K/R) or negatively (D/E) charged residues on the protein surface. Introducing charged residues 
(D, E, R, or K) at all surface residue positions (A15), introducing only E there following ref. 17 
(A16), or substitutions to all other residues but D, E, R, or K (A20) led to GiPvar = 1.10 to 1.76, 
but GiPpos < 1.0 with at the same time ≥ 120 residues to consider. Focussing on lysine residues 
on the surface only and substituting them to E (A17) yielded GiPvar = 2.26, but GiPpos = 0.33, 
again indicating that such charge changes are effective at predicted relevant sites with ~1/3 of 
the precision of random mutagenesis only. Finally, performing positive-to-negative 
substitutions for surface residues (A18) or the opposite, negative-to-positive substitutions 

(A19), yielded almost identical results for both GiPvar  2.75 and GiPpos  0.56, indicating that 
the direction of single charge changes does not matter but that such changes are effective at 
predicted relevant sites with ½ of the precision of random mutagenesis only. 
Group VI: Approaches A21 and A22 were suggested based on previous observations for the 
BsLipA SSM library 16 and involved the somewhat unexpected substitutions to chemically 
different amino acids at all sites, or substitutions in helices and loops. However, in both cases, 
GiPvar and GiPpos are close to 1 or below, indicating that these approaches lead to precisions as 
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found in random mutagenesis. Not considering this prior information led to overrating the 
approaches previously 16. 
To conclude, of the presented 22 approaches, only two stand out with substantially improved 
GiPvar and GiPpos values. These are A12, which exploits experimental information on the 
thermostability of BsLipA, resulting in GiPvar of 3.03 and GiPpos of 1.61, as well as A14, which 
exploits structural weak spots of BsLipA predicted by rigidity theory, resulting in GiPvar of 
2.39 and GiPpos of 1.41. Further, they only require performing substitutions at 6 to 10 positions. 
On the other hand, approaches employing the concept of surface charge modification, which 
focus on repelling aIL ions via the introduction of charged residues at the surface (A1, A3-A4, 
A15-A19), yield high GiPvar ≥ 1.6 (except for A3) only at the expense of low GiPpos ≤ 0.6. 
 

 
Figure 3: Only five approaches (A1, A2, A12, A14, A15) yield a significantly improved 
prediction precision for relevant variants compared to random mutagenesis; only two 
approaches (A12, A14) yield a markedly improved prediction precision for relevant 
positions compared to random mutagenesis. Approaches are colored according to their 
classification. See Figure 2 for the color code. GiPvar and GiPpos are shown as mean ± standard 
error of the mean over the four BsLipA SSM libraries. Significant differences compared to 
random mutagenesis (Rd) are indicated with an asterisk if p < 0.05 for each of the four BsLipA 
SSM libraries.  
 

3.4 Evaluating Physicochemical and Evolutionary Properties for Predicting 
Improved aIL Resistance 

Motivated by recent findings that simple descriptors can explain protein stability change upon 
substitutions 76, we scrutinized if five physicochemical and evolutionary properties of protein 
residues can predict relevant variants and substitution sites to improve aIL resistance. These 
properties are solvent accessibility (P1-P3), relative volume (P4), hydropathy (P5), unfolding 
free energy (P6), and residue conservation (P7-P8) (summarized in Table 1; see the 
Supplementary Information and Table S1 for detailed information on each approach). We also 
combined these properties (P9) and evaluated their robustness towards deviations from the 
optimal range by relaxing and tightening the ranges by 25% and 50% (P10-P12). Here, we 
considered substitutions to all other amino acids at predicted relevant sites according to the 
properties P1-P12. 
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P1-P3: Solvent accessibility. Recent studies investigating the thermostability of Streptococcus 
sp. protein G 52 and BsLipA 33 reported increased prediction accuracy when substituting at more 
solvent-exposed positions compared to buried positions. For increasing aIL resistance, selecting 
residues with a low to moderate solvent accessibility (SA, Eq. S5) had a beneficial effect for 
GiPvar = 1.46 and GiPpos = 1.13 (10% < SA ≤ 40%, P1). Substituting at solvent-accessible 
positions (5% ≤ SA), in general, was more favorable (GiPvar = 1.20 and GiPpos = 1.07, P2) than 
at buried (5% > SA) sites (GiPvar = 0.58 and GiPpos = 0.85, P3). 
P4: Relative volume. The relative volume (rV, Eq. S7) reflects that different positions can 
differentially accommodate volume changes, e.g., substitutions of small, buried amino acids to 
larger ones are usually disfavorable 52. Consequently, the precision in predicting improved 
BsLipA thermostability increased when small-to-large substitutions were excluded 34. Here, 
similar to the exclusion of small-to-large mutations, excluding substitutions that markedly 
increase the occupied volume (rV > 1.3) led to GiPvar = 1.09 but GiPpos = 0.88. 
P5: Hydropathy. The change in hydropathy (ΔHy, Eq. S9) of BsLipA variants is related to the 
concept of surface charge modification as both aim at modifying polarity, which is widely used 
to increase aIL resistance 17-20, 49. Here, the highest GiP were found for a moderate reduction in 
hydropathy (ΔHy ≤ -4) (GiPvar = 1.21 and GiPpos = 0.61). 
P6: Unfolding free energy. The unfolding free energy (ΔΔGunf, Eq. S6) is an important factor 
when considering substitutions, as beneficial effects towards aIL resistance must compensate 
potentially destabilizing effects (higher ΔΔGunf) due to substitutions. This concept was 
previously used to evaluate the cooperativity of BsLipA variants to increase aIL resistance in 
[BMIM/Cl], where the exclusion of strongly destabilizing variants (ΔΔGunf ≥ 7.52 kcal mol-1) 
led to a higher chance of determining cooperative variants 63. Here, excluding substitutions that 
moderately destabilized the enzyme (ΔΔGunf > 4 kcal mol-1) led to the highest GiP 
(GiPvar = 1.13 and GiPpos = 0.93). 
P7-P8: Residue conservation. Residue conservation (CS) is often analyzed prior to rational 
mutagenesis approaches to determine residues important for the structure or function of 
enzymes, such as in the catalytic or ligand binding sites 60, 77, 78. Reducing the degree of residue 
conservation below which substitutions are allowed led to an almost linear increase of both 
GiPvar and GiPpos, resulting in GiPvar = 1.22 and GiPpos = 1.20 at CS = 0 (see P8). However, as 
relevant sites and substitutions can coincide with semiconserved positions 33, we used CS ≤ 4 
as the limit, which yields GiPvar = 1.13 and GiPpos = 1.08 (P7). 
P9-P12: Combined properties. We then evaluated the performance when combining the 
properties P1, P4, P5, P6, and P7. This yielded GiPvar = 3.35 and GiPpos = 1.29 (P9), which are 
substantially increased GiP values compared to the individual properties. Notably, the result is 
robust to deviations from the optimal property ranges and still yielded GiPvar ≈ 3 and GiPpos ≈ 1 
when tightening or relaxing the optimal ranges by 25%, respectively (P10 and P11). Finally, 
relaxing the optimal ranges by 50% (P12) yielded GiPvar = 1.85 and GiPpos = 0.83, a 
performance comparable to that of some experimental approaches (A1, A2, and A4). 
Tightening the optimal ranges by 50% led to zero predicted relevant variants and positions. 
Note that relaxing (tightening) refers to modifying the optimal ranges as to include more (less) 
variants. I.e., for ΔHy, relaxing (tightening) by 25% means modifying the range from [-∞, -4] 
to [-∞, -3] (or [-∞, -5]), while the same changes modify the SA-ranges from [0.1, 0.4] to [0.075, 
0.5] (or [0.125, 0.3]). 
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To conclude, the combination of five physicochemical and evolutionary properties (P9), which 
can be computed within a few hours from a static protein structure or sequence information, 
yielded the, so far, highest GiPvar value and the third-highest GiPpos value. At 13 positions 
predicted to be relevant, substitutions would need to be performed, up to about twice as many 
as predicted by A12 and A14. The five properties had been optimized individually against the 
BsLipA SSM library, which may explain the excellent performance of P9. Still, if the properties 
were modified by -25% to +50% (P10-P12), GiPvar ≥ 1.85 result, although the GiPpos decreased 
to ~1 or below. 
 

3.5 Computational Approaches can be Further Enhanced by Combination 
with Physicochemical and Evolutionary Properties 

C1-C9: “Combinations”. Finally, we probed if the predictive power of the most promising 
computational structure- and mechanism-based approaches (A9, A11, A14) can be further 
improved by combining them with the physicochemical and evolutionary properties (P9), 
which also notably reduces the number of predicted relevant variants and positions, resulting in 
C1-C3 (Table 1; Table S1). Furthermore, we assessed the predictive power when the applied 
properties deviate by -25% or +25% from the optimal values, resulting in C4-C6 and C7-C9, 
respectively. In most cases, increases in GiPvar result, while GiPpos is sustained (~1) or increased 
(~1.7). These results indicate that the properties can be used as filters to improve the predictive 
power for relevant variants and positions. Particularly, the results for C3, C6, and C9 indicate 
that, first, predicting relevant positions by identifying structural weak spots with CNA (A14) 
and, subsequently, filtering the variants and positions using the physicochemical and 
evolutionary properties (P9, P10, and P11) is a powerful and efficient approach to predict 
smarter variant libraries at very few positions for improving aIL resistance in protein 
engineering approaches. 

4 Discussion 

In this study, we systematically and rigorously evaluated the performance of 22 previously 
described structure-based approaches to increase aIL resistance. We based our assessment on 
an experimental BsLipA SSM library, which is, to our knowledge, outstanding with respect to 
the number and completeness of variants and the variants’ screening against four aIL. We show 
that, surprisingly, most of the approaches yield low GiP values, in particular with respect to 
predicting relevant positions. Here, 14 approaches perform worse than random mutagenesis 
(GiPpos < 1). Encouragingly, however, exploiting experimental information on the 
thermostability of BsLipA (A12) or structural weak spots of BsLipA predicted by rigidity theory 
(A14) yields GiPvar values of 3.03 and 2.39 as well as GiPpos ≈ 1.5. Furthermore, we 
demonstrated that the combination of five simple-to-compute physicochemical and 
evolutionary properties (P9-P12) substantially increases the precision of predicting relevant 
variants and positions of BsLipA for increasing aIL resistance. Finally, we showed that 
combining these properties with predictions from structural stability analyses of MD 
trajectories (C1/C4) or structural weak spots identified by CNA (C2, C3, C5, C6, and C9) 
additionally improves GiPvar up to 4-fold to ~10 (C3, C6, C9) and sustains or increases 
GiPpos ≈ 0.96-1.77. Furthermore, at most ten relevant positions are predicted, similar to the 
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number obtained using different random mutagenesis approaches 30, 79-81. This enables the 
investigation of substitution combinations for additive or cooperative effects. 
Our results are based on the BsLipA SSM library that covers all 181 positions and contains all 
3439 variants, each with a single amino acid substitution as confirmed by DNA sequencing 16. 
This dataset represents a unique opportunity to evaluate the predictions of approaches to 
improve aIL resistance, because, in contrast to other biotechnologically relevant enzyme 
properties such as thermostability and resistance towards detergents and organic solvents, for 
which databases such as ProTherm 82, 83, ProtaBank 84, and FireProtDB 85 exist, such large-scale 
data is not available for aIL resistance. Additionally, it is unique in terms of its 
comprehensiveness and unbiasedness. In comparison, the ProTherm database 82, 83 contains on 
average ∼12 single, ∼12 double, and ∼1 multiple substitutions for each of the ∼1000 proteins 
stored 86 and is strongly biased towards substitutions to alanine 87. Thus, outliers in this data 
may potentially corrupt its evaluation to extract generally applicable rules to improve enzyme 
properties. Finally, the uniformity of screening conditions applied for the BsLipA SSM library 
avoids ambiguous results originating from different experimental methods, which was observed 
for thermostability data of the same variant 88. Note, though, that enzyme activity determined 
for the BsLipA SSM library may be influenced by differences in thermodynamic or kinetic 
protein stability 34, 55 and protein expression 56. Although in a recent study, these shortcomings 
were circumvented by reporting comprehensive, domain-wide thermostability data for purified 
variants of protein G (Gβ1, 56 residues) 52, no such data at large scale is available for aIL 
resistance. 
To evaluate our results, we used rigorous binary classifiers that are not affected by data 
prevalence and data imbalances and report the results relative to performing random 
mutagenesis, which accounts for a priori probabilities 57, 58. Subsequently, we determined if the 
changes of the observed relevant and non-relevant populations were significant using 
Boschloo’s exact test 75. Five approaches (A1, A2, A12, A14, A15) significantly improved 
GiPvar compared to random mutagenesis, but only approaches A12 and A14 markedly improved 
GiPpos, although not significantly (Figure 3). The latter is likely due to the small sample sizes 
evaluated for predicted relevant positions (sometimes a field of the contingency table even 
contains a zero) 89, although A12 and A14 consistently improve GiPpos for all four aIL screened 
(A12: 1.66, 1.46, 1.59, 1.74; A14: 1.39, 1.31, 1.52, 1.39). This finding indicates that the BsLipA 
SSM library may still be too small to allow for a rigorous statistical assessment of approaches 
that aim at predicting small residue proportions as relevant positions. These limitations will 
likely become more pronounced when smaller datasets, such as those extracted from the 
ProTherm database 82, 83 or the Gβ1 dataset 52, are considered. 
The prediction precision of approaches that determine relevant positions from experimental 
structural data (group I), extensive computations (group II), or perform general surface charge 
modifications (group V), was unexpected considering that in no (group II) or at most 50% of 
the assessed approaches (groups I and V) GiPvar values were > 2, and in no (group V) or at most 
40% of the cases GiPpos values were > 1. The low performance needs to be related to the 
extensive experimental (group I) or computational (group II) work required to predict relevant 
positions, or the wide use of the approaches (group V) 18-20, 41, 44. Hence, our assessment 
demonstrates that approaches should be evaluated on large, unbiased, and complete datasets 
that allow a thorough analysis of a priori information; by contrast, many of the approaches in 
the three groups have been exemplified based on small numbers of variants or positions only 
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(e.g., 24 positions in the case of A1 90, 23 positions in the case of A4 17, or 20-28 positions in 
the case of A6-A11 43). Notably, predictions of relevant positions in terms of interaction sites 
or perturbed residues for the BsLipA SSM library based on experimental (A2, A5) or 
computational (A9, A11) work perform almost equally, and only moderately better than 
performing substitutions at all solvent-exposed positions (P2). Furthermore, by most of the 
approaches of the three groups, many (≥ 20) relevant positions are predicted, which then lead 
to high numbers of substitutions to be evaluated. 

The cases where GiPvar > 2 but GiPpos  0.3 to 0.5 (A1, A4, A17-A19) indicate that charge 
modifications may be effective but that their effect is strongly position-dependent. This 
corroborates previous findings that aIL interact specifically with a few surface residues of 
BsLipA, but also hints at that identifying such interaction sites without evaluating the 
interaction effect on the protein stability is insufficient 43. Indeed, when changes in local 
structural stability originating from such interactions were additionally considered, higher 
GiPpos, albeit still < 1, are obtained (A8, A10). Finally, almost identical prediction precisions 
for R/K substitutions at cationic binding sites (A6) versus D/E substitutions at anionic binding 

sites (A7), or K/RD/E (A18) versus D/EK/R (A19) substitutions at solvent-exposed sites, 
indicate that effects on protein stability due to aIL cations or anions can be equally well 
counteracted. These results furthermore suggest that cooperative countermeasures may be 
possible when the respective charge modifications are introduced together 42. 
Previously, knowledge gained on a system while improving one property was subsequently 
used to improve another property 33. This applies particularly to improving thermostability, 
which has been described to foster protein evolvability 91, 92 and be related to improvements of 
resistance to organic solvents 66, 93-96 and detergents 33, 97. In that respect, knowledge gained for 
improving resistance to detergents also leads to moderate GiP compared to random mutagenesis 
for predicting relevant positions and variants for resistance to aIL (A13). More remarkably, the 
largest GiP across all 22 approaches are found if prior knowledge on relevant positions for 
thermostability is transferred to improving aIL resistance (A12), corroborating the relationship 
between proteins that are stable against temperature and other influence 33, 66, 94-97. Rather than 
generating and screening an entire SSM library to perform approach A12, knowledge gained 
during enzyme engineering towards improved thermostability should also be valuable 98-102 if 
the thermostability screening is more efficient than that for aIL resistance. Finally, many more 
prediction algorithms have been devised for improving thermostability than aIL resistance, 
which may also be exploited in this context 103-108. One such example is CNA, which has been 
applied in retro- 33, 55, 109-111 and prospective 34, 112, 113 studies to improve protein thermostability 
previously and has been used before to predict structural weak spots of BsLipA 33, 34, 55. 
Applying these weak spot predictions (A14) yields the highest GiPpos among all evaluated 
computational approaches and the fifth-highest GiPvar among all evaluated experimental and 
computational approaches, without the need to tailor the method system-specifically and with 
only moderate computational costs 33.  
We contrasted the performance of the established approaches with that of five physicochemical 
and evolutionary properties. Such descriptors have been widely analyzed before for improving 
thermostability 33, 52, 114, 115, but less for aIL resistance 16, 49, 63. Many of the approaches derived 
from literature share features with these properties. E.g., substituting to chemically different 
amino acids 16 (A21) is highly similar to introducing moderate changes in ΔHy as this often 
corresponds to different amino acid types, e.g., aliphatic-to-polar and polar-to-charged 116. 
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However, our hydropathy-based criterion allows us to exclude substitutions that increase 
hydropathy, that way limiting changes to increases in polarity, which were suggested to be 
beneficial for aIL resistance, particularly when introduced at the enzyme surface 16, 49. 
Surprisingly, the most noticeable improvements originate from properties that disregard 
specific knowledge on aIL but originate from general data- or structure-based computations, 
such as solvent-accessibility, residue conservation, and unfolding free energy. The success of 
these approaches is likely due to “excluding unbeneficial variants” rather than “predicting 
beneficial variants”, corroborating previous observations for excluding or including specific 
variants 33, 34, 52, 63, 66.  
As all properties that filter on the variant-wise level (P4-P6) led to increased GiPvar at the 
expense of decreased GiPpos when applied alone, it is advisable to combine variant-wise 
descriptors (P4-P6) with at least one position-wise descriptor (P1-P3, P7-P8) to circumvent 
this drawback. Accordingly, combining such properties (P9) not only reduced the numbers of 
predicted relevant variants and positions to a level realizable by current high-throughput 
methods 67-73 but also substantially increases the precision of predicting relevant variants and 
positions of BsLipA for increasing aIL resistance. To probe for the bias introduced in P9 by 
optimizing the individual properties against the BsLipA SSM libraries, we assessed the 
performance of the combination when the properties deviated from the optimal values by -25% 
(P10), +25% (P11), and +50% (P12). Although the performance of GiPpos dropped to ~1, GiPvar 
remains ≥ ~2, which is still higher than that of most other approaches and indicating that the 
computed ranges are robust against deviations from their optimal values. 
Finally, the improved predictive performances of C1-C9 indicate that structure- and 
mechanism-based computational predictions can still be markedly improved by applying filters 
based on physicochemical and evolutionary properties. As another favorable result, few 
predicted relevant variants and positions were obtained, which allows focussing subsequent 
experimental efforts. This is important because protein engineering approaches are limited to a 
few positions if the whole sequence space shall be investigated by substitutions, as the library 
size increases exponentially 74. Identified variants can subsequently be employed in additive 
mutagenesis approaches, such as Computer-Assisted Recombination (CompassR), for creating 
further improved recombinant variants 46, 63. For instance, substitutions with 
ΔΔGunf < 7.5 kcal mol-1 were found to be more effectively combinable, indicating that the 
exclusion of destabilizing substitutions with ΔΔGunf > 4.0 kcal mol-1 likely leads to combinable 
substitutions with synergistic and further improved enzyme resistance to aIL 46, 63. 
In contrast to other methods limiting the investigated range of potential substitutions, our 
approach evaluates substitutions over the whole residue range, filtering on properties that are 
independent of fixed residue characteristics but instead employing relative property differences. 
For instance, in surface charge modification approaches including only substitutions to charged 
residues on the enzyme surface, only ~22% of the beneficial substitutions in the BsLipA SSM 
library are considered, and many relevant variants are discarded 16. Furthermore, our approach 
allows exploiting site-specific measures potentially yielding many relevant variants, such as the 
introduction of hydrophobic or polar residues, which has rarely been thoroughly investigated 49 
compared to surface charge modifications 17-20, 45, 49. However, previous findings that many of 
the highest increases in aIL resistance were achieved by introducing hydrophobic or polar 
residues 49 indicate substantial potential for variants with improved enzyme resistance to aIL 
based on these substitutions. Thus, our results indicate that a time- and cost-efficient workflow 
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to improve aIL resistance (C3) is given by, first, predicting relevant positions as structural weak 
spots with CNA (A14) and, subsequently, reducing the number of predicted relevant variants 
there according to the physicochemical and evolutionary properties (P9). Notably, this 
combination is robust against variations of the properties by ±25% (C6, C9). 
In summary, we show for a complete SSM library of BsLipA that the majority of 22 commonly 
used approaches to increase aIL resistance perform surprisingly poorly compared to random 
mutagenesis. These findings stress the need to consider a priori information and evaluate 
approaches for improving aIL resistance on large and diverse enough datasets in the future. 
Notably, however, exploiting experimental information on the thermostability of BsLipA or 
structural weak spots of BsLipA predicted by rigidity theory stand out favorably with GiPvar of 
3.03 and 2.39 as well as GiPpos ≈ 1.5. The combination of five physicochemical and 
evolutionary properties provides an even more compute-efficient approach with still fair GiPvar. 
Finally, combining structural weak spot prediction by rigidity theory (CNA) with the 
physicochemical and evolutionary properties yields particularly good GiPvar = 7.18-9.76 and 
GiPpos = 1.77. Hence, compared to an unbiased random mutagenesis study, the experimental 
effort to identify 10 relevant variants will be reduced from screening ~117 randomly selected 
variants to only ~12 rationally selected variants using approach C6. Although these results were 
obtained for the case of BsLipA, CNA was not system-specifically adapted, and the robustness 
of the physicochemical and evolutionary properties as to pronounced deviations from their 
cutoff values was demonstrated. These findings suggest that this combination should be 
applicable to other enzyme systems for guiding protein engineering approaches towards 
improved aIL resistance for the use in green industrial approaches.  
 
  



16 
 

Table 1: Predictive performance of selected approaches and physicochemical and 
evolutionary properties to predict relevant variants and positions[a] 

Secondary structure of BsLipA 

 
        
#[b] Conditions Nvar

[c] Npos
[d] GiPvar GiPpos p-valuevar p-valuepos 

Rd[e] Random mutagenesis 16 206-462/3439 91-124/181 9%[f] 57%[g] n.d.[h] n.d.[h] 

 

A1 
Binding sites (X-

Ray/MD)  R/K 90 
6-13/44 4-9/24 2.47 0.47 0.01-0.05 ≤0.04 

 

A11 
Structural stability (CNA) 

43  
38-63/437 13-18/23 1.32 1.21 0.01-0.55 0.02-1.00 

 

A12 
Thermostability hotspots 

(Class X) 33 
24-46/114 5-6/6 3.03 1.61 ≤0.01 0.03-0.18 

 
A14 CNA weak spots 33 29-46/190 7-9/10 2.39 1.41 ≤0.01 0.10-0.30 

 
A15 5% ≤ SA [i]  D/E/R/K 44-93/466 35-58/123 1.60 0.63 ≤0.01 ≤0.01 

 

A22 
Helix- and loop 

structures 16 
178-392/2774 75-102/146 1.05 1.01 0.43-0.82 0.80-1.00 

 
P1 10% ≤ SA ≤ 45% 107-216/1254 38-47/66 1.46 1.13 ≤0.01 0.05-0.74 

P4 0 ≤ rV [i] ≤ 1.30 140-316/2170 69-97/157 1.09 0.88 0.23-0.54 0.15-0.27 

 
P5 ΔHy [i] ≤ -4 49-140/731 21-43/87 1.21 0.61 0.01-0.87 ≤0.01 

 
P6 ΔΔGunf [i] ≤ 4 189-390/2733 85-119/178 1.13 0.93 0.04-0.35 0.28-0.67 

 
P7 CS [i] ≤ 4 177-394/2641 75-101/139 1.13 1.08 0.08-0.26 0.20-0.64 

 
P9 P1 & P4 & P5 & P6 & P7 20-45/108 9-10/13 3.35 1.29 ≤0.01 0.22-0.71 

 
P11 P9 + 25% 34-73/207 14-17/26 2.72 1.01 ≤0.01 0.80-1.00 

 
C1 A9 & P9 6-12/35 3-4/4 2.77 1.65 ≤0.02 0.08-0.58 

 
C2 A11 & P9 0-6/2-23 0-3/1-3 1.97 1.04 0.01-1.00 0.25-1.00 

 
C3 A14 & P9 4-10/11 1/1 7.18 1.77 ≤0.01 n.d.[h] 

 
C4 A9 & P10 1-2/12 1/2 1.17 0.89 0.50-1.00 0.50-1.00 

 
C5 A11 & P10 0-1/5-7 0-1/1 0.84 0.87 0.45-1.00 0.25-1.00 

 
C6 A14 & P10 2-5/5 1/1 9.76 1.77 ≤0.03 n.d.[h] 

 
C7 A9 & P11 14-28/77 4-7/10 2.70 0.96 ≤0.01 0.50-1.00 

 



17 
 

[a] Substitutions to specific residues are indicated by “” plus one-letter code; in all other cases, 
substitutions to all residues are performed. The results for the predicted relevant variants and 
positions for all evaluated approaches, properties, and the combinations of both are shown along 
the sequence of BsLipA (see the top for a secondary structure representation): Red bars indicate 
relevant positions for which relevant variants were correctly predicted. Blue bars indicate 
relevant positions for which no relevant variant was correctly predicted. The height of red bars 
represents the fraction of relevant variants among all predicted variants for the given position, 
thus, describing the precision of predicting relevant variants. The height of blue bars represents 
the fraction of (falsely) predicted relevant variants of all possible variants at this position, thus, 
giving an estimate of the experimental work unnecessarily spent when investigating all 
predicted variants. In all, high red bars and low blue bars indicate a favorable approach, and 
vice versa. For random mutagenesis (Rd), the graph along the BsLipA sequence represents the 
experimentally determined mutagenesis efficiency (i.e., the relevance) of each sequence 
position. Thus, blue bars represent positions not relevant in all aIL, whereas red bars represent 
positions relevant in at least one aIL. The height of red bars displays the average fraction of 
relevant variants at the respective relevant position. 
[b] Numbering of evaluated approaches and properties. A = Approach, P = Properties, C = 
Combination of approaches and properties. 
[c] Number of relevant variants vs. all considered variants. 
[d] Number of relevant positions vs. all considered positions. 
[e] Random mutagenesis. 
[f] Averaged percentage of relevant variants compared to the whole BsLipA SSM library. 
[g] Averaged percentage of relevant positions compared to the whole BsLipA SSM library. 
[h] Not determined. 
[i] See section 3.4 in the Supplementary Information for an explanation of the abbreviations. 
 
  

C8 A11 & P11 3-11/20-51 1-4/3-6 2.69 1.19 0.01-0.73 0.10-1.00 

 
C9 A14 & P11 13-20/26 2/2 6.87 1.77 ≤0.01 n.d.[h] 
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