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ABSTRACT

Synchronization of two actuated sheets serves as a simple model for the interaction between flagellated microswimmers. Various factors,
including inertia, sheet elasticity, and fluid viscoelasticity, have been suggested to facilitate the synchronization of two sheets; however, the
importance of different contributions to this process still remains unclear. We perform a systematic investigation of competing effects of
inertia, sheet elasticity, fluid compressibility, and viscoelasticity on the synchronization of two sheets. Characteristic time ss for the
synchronization caused by inertial effects is inversely proportional to sheet Reynolds number Re, such that ssx / Re�1 with x being the
wave frequency. Synchronization toward stable in-phase or opposite-phase configuration of two sheets is determined by the competition of
inertial effects, sheet elasticity, fluid compressibility, and viscoelasticity. Interestingly, fluid viscoelasticity results in strong synchronization
forces for large beating amplitudes and Deborah numbers De> 1, which dominates over other factors and favors the in-phase configuration.
Therefore, our results show that fluid viscoelasticity can dramatically enhance synchronization of microswimmers. Our investigation
deciphers the importance of different competing effects for the synchronization of two actuated sheets, leading to a better understanding of
interactions between microswimmers and their collective behavior.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0049099

I. INTRODUCTION

Locomotion of biological and artificial microswimmers and their
collective behavior have attracted considerable scientific and techno-
logical attention recently.1–4 The foci of such studies range from physi-
cal mechanisms governing the motion and interaction of
microswimmers to their use in practical applications and the emer-
gence of collective behavior. One of the interesting aspects is the inter-
action between multiple swimmers facilitated by a suspending fluid
medium.5–8 For instance, swimming spermatozoa tend to synchronize
their beating flagella when they are close to each other.6,9–11 Even
though distinct spermatozoa likely have differences in their intrinsic
properties, they are able to adjust their beating characteristics (e.g.,
phase and frequency), and swim together as a concerted unit.9

Furthermore, synchronization of motion mediated by suspending
medium is relevant to many other microswimmers, which propel
using helical flagella12,13 or cilia.14–16

One of the first propositions that the synchronization of micro-
swimmers is mediated by hydrodynamic interactions corresponds to

the theoretical work of Taylor in 195117 for two waving tails.
Interestingly, the first experimental confirmation of the importance of
hydrodynamic interactions for the synchronization of two beating fla-
gella has been realized only a few years ago.18 Theoretical analysis of
microswimmer behavior and possible synchronization interactions is
generally performed under the assumption of zero Reynolds number
(i.e., no inertia),1,17,19,20 because of non-linearity of the inertial term in
the Navier–Stokes equations. Several theoretical studies have also con-
sidered the effect of fluid inertia at small Reynolds numbers.21,22 Even
though the assumption of vanishing inertia is generally justified by the
small size and low swimming velocity of microswimmers, there are
examples of artificial microrobots which operate at non-negligible
Reynolds numbers.4,23,24 A theory, in which the synchronization of
two inextensible waving sheets is considered, predicts no synchroniza-
tion of the sheets having a front-back motion symmetry (e.g., a pure
sine wave) due to kinematic reversibility of Stokes flow (i.e., under the
assumption of no inertia).25 Thus, synchronization is only possible if
there exist additional irreversible factors which break the
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symmetry.25,26 For example, to make the synchronization of two
sheets possible, a front-back asymmetry in the beating motion is pro-
posed.25,27 Furthermore, other factors, such as non-negligible iner-
tia,5,28,29 sheet elasticity,7,30 and viscoelasticity of non-Newtonian
fluids,31,32 are sufficient to break the symmetry and enable synchroni-
zation. The 2D model of two synchronizing sheets has also been
extended to small-amplitude three-dimensional beating of infinite fla-
gellar filaments.33

Another interesting aspect in the synchronization of two sheets is
that there exist two stable synchronized configurations, namely, in-
phase and opposite-phase conformations with a phase difference
/d ¼ 0 and /d ¼ p between the two sheets, respectively. Either the
in-phase or opposite-phase configuration is stable, depending on vari-
ous conditions. For instance, the geometry of a prescribed asymmetric
wave determines the preference for each configuration.25,27 In the case
of non-negligible inertial effects, the opposite-phase conformation is
preferred with increasing Reynolds number.28 Sheet flexibility30 as
well as viscoelasticity of an Oldroyd-B fluid31,32 drive the system
toward the in-phase configuration. Noteworthy, the theory of sheet
synchronization in Oldroyd-B fluids predicts the strongest synchroni-
zation force at Deborah number De of unity, while at large De, the
synchronization forces asymptotically approach zero. For comparison,
Deborah number of a swimming sperm in cervical mucus is larger
than 100, and fluid viscoelasticity dramatically enhances clustering of
bovine sperm.34 Despite several existing studies on sheet synchroniza-
tion, the interplay and importance of different competing effects
remain unclear.

We perform a systematic analysis of the importance of different
aforementioned factors for the synchronization of two sheets. Our
simulations are based on the smoothed dissipative particle dynamics
(SDPD) method,35–37 a particle-based hydrodynamics technique,
where both Newtonian and Oldroyd-B fluids are implemented. Two
different setups are considered, including (i) a pair of inextensible wav-
ing sheets with a prescribed motion, for which synchronization forces
are measured, and (ii) two flexible sheets with an internal actuation,
for which dynamic synchronization toward one of the stable configu-
rations is simulated. Our results show that for any non-zero Reynolds
number Re, the two sheets always synchronize regardless of its magni-
tude. When inertial effects dominate, the opposite-phase configuration
is preferred and a characteristic time ss for the synchronization nor-
malized by the wave frequency x is inversely proportional to Re, i.e.,
ssx / Re�1.

Sheet elasticity also affects stable synchronized configuration,
driving the two sheets toward the in-phase configuration. Fluid com-
pressibility favors the in-phase conformation, and might become
important for millimeter-sized swimmers in highly viscous liquids.
Fluid viscoelasticity, when a dominating factor, also drives the sheets
toward the in-phase configuration. Nevertheless, at high enough Re,
inertial effects may favor the opposite-phase conformation even in vis-
coelastic fluids. The modes of stable synchronized configurations with
respect to different factors are summarized in Table II. Furthermore,
note that the failure of the theory in Ref. 31 to predict large synchroni-
zation forces at De> 1 is related to the leading order approximation in
terms of the wave amplitude. For large enough wave amplitudes,
strong deviations in synchronization forces with respect to the theoret-
ical predictions are observed for De> 1, leading to a dramatic
enhancement of sheet synchronization by fluid viscoelasticity. These

results are consistent with experimental observations of the pro-
nounced enhancement of sperm clustering in viscoelastic fluids.34 In
conclusion, our results provide better understanding of different com-
peting effects for sheet synchronization and can be used to control the
synchronization of artificial swimmers.

The paper is organized as follows. Section II presents fluid and
sheet models, simulation setup, and the validation of these models
against available theoretical predictions. In Sec. IIIA, synchronization
of two sheets in Newtonian fluids is studied for different model
parameters affecting the value of Re, fluid compressibility, and sheet
flexural rigidity. Section III B presents synchronization results in
Oldroyd-B viscoelastic fluids. Swimming efficiency of two synchro-
nized sheets is discussed in Sec. III C. Finally, we conclude in Sec. IV.

II. METHODS AND MODELS
A. Viscoelastic fluid model

Fluid flow is modeled by the smoothed dissipative particle
dynamics (SDPD) method,35,36 which is a particle-based mesoscopic
hydrodynamics approach. SDPD is derived through a Lagrangian dis-
cretization of the Navier–Stokes equations similar to the smoothed
particle hydrodynamics (SPH) method,38 with the proper inclusion of
thermal fluctuations following the dissipative particle dynamics
(DPD) approach.39,40 We employ an SDPD version, which conserves
angular momentum,36 as it can be crucial for some problems.41,42 In
SDPD, each particle can be considered as a small fluid volume (or
Lagrangian discretization point) characterized by a position ri, velocity
vi, and mass mi. In addition, each SDPD particle possesses a spin
angular velocity wi and moment of inertia Ii introduced for the
enforcement of angular momentum conservation.36

SDPD particles i and j interact through four pairwise forces,
including conservative FC

ij , dissipative F
D
ij , rotational F

R
ij , and random

~F ij forces given by

FC
ij ¼

Pi

d2i
þ

Pj

d2j

 !
Fij � rij;

FD
ij ¼ �cij vij þ ðeij � vijÞeij

� �
;

FR
ij ¼ �cij

rij
2
� ðwi þ wjÞ;

~F ij ¼ rij d �w
s
ij þ

1
3
tr dwij
� �

1

� �
� eij
Dt
;

(1)

where rij ¼ ri � rj; vij ¼ vi � vj, and eij ¼ rij=rij. Particle number
density di is computed as di ¼

P
j Wij using a smoothing kernel func-

tion Wij ¼WðrijÞ that vanishes beyond a cutoff radius rc and defines
a non-negative function Fij through the equation riWij ¼ �rijFij.
Then, particle mass density is given by qi ¼ midi. In the SDPD formu-
lation for Newtonian fluids, the stress tensor Pi ¼ psi1 contains only
diagonal (i.e., pressure) components. The pressure psi is determined by
the equation of state (EoS) psi ¼ p0ðdi=d0Þ� � pb, where d0 is the aver-
age number density, and p0, �, and pb are freely selected parameters.
Furthermore, cij and rij are the corresponding force amplitudes
defined as

cij ¼
20g
7

Fij
didj

; rij ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
kBTcij

q
; (2)
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where g is the fluid dynamic viscosity and T is the equilibrium temper-
ature. Equation (1) also contains a matrix of independent Wiener
increments dwij with its trace tr½dwij� and the traceless symmetric
part d �w

s
ij ¼ 1

2 ðdwij þ dwjiÞ � 1
3 tr½dwij�, and the time step Dt.

The evolution of particle positions, translational, and angular
velocities is obtained by integration of the following equations of
motion:

_r i ¼ vi;
mi _vi ¼

X
j

F ij ¼
X
j

ðFC
ij þ FD

ij þ FR
ij þ ~F ijÞ;

_w i ¼
1
2Ii

X
j

rij � Fij;

(3)

using the velocity-Verlet algorithm.43

Fluid elasticity is introduced following the idea that every fluid
particle contains Np bead-spring dumbbells.37 Dumbbells are not
explicitly modeled, but represented by a conformation tensor c that
characterizes their stretching state within each particle. The conforma-
tion tensor is expressed as ci ¼ 1=Np

PNp
a qaqa, where qa is the end-

to-end distance of the a-th dumbbell within a fluid particle i. Then,
the stress tensor Pi in Eq. (1) is modified by the addition of c contri-
bution as follows:37

Pi ¼ psi1þNpdikBTð1� ciÞ: (4)

Evolution of the conformation tensor proceeds according to37

_cll0

i ¼
1
di
cl�i j

�l0

i þ
1
di
cl
0�

i j
�l
i þ

1
s
ðdll0 � cll0

i Þ þ
d~cll0

i

Dt
; (5)

where j
l�
i ¼

P
j Fijr

l
ijv

�
ij is the velocity gradient tensor, s is the dumb-

bell relaxation time, and d~c is the noise term. This model corresponds
to the well-known viscoelastic Oldroyd-B model, in which the total
fluid viscosity g ¼ gs þ gp has two contributions, including solvent gs
and polymer gp components. The polymer contribution is given by
gp ¼ kBTd0Nps and can easily be adjusted through the parameters Np

and s.
In this work, the smoothing kernel is represented by the two

dimensional (2D) Lucy function44

WðrÞ ¼ 5
pr2c

1þ 3
r
rc

� �
1� r

rc

� �3

: (6)

Thermal fluctuations are neglected by setting kBT ¼ 10�6, such that
the SDPD method is essentially reduced to SPH. Furthermore, we also
neglect the noise term of the conformation tensor, i.e., d~c ¼ 0.

B. Sheet model and simulation setup

Figure 1(a) shows a schematic of our 2D simulation setup with
two sheets. According to the theoretical work of Taylor,17 traveling
wave yðx; tÞ ¼ b sin ðkx � xt þ /Þ of an inextensible 2D sheet can be
modeled through the imposition of particle velocities as

vx ¼
x
k
� Q cos h; vy ¼ �Q sin h;

tan h ¼ bk cos ðkx � xt þ /Þ;

Q ¼ x
2pk

ð2p
0

1þ b2k2 cos2n
� �1=2

dn;

(7)

where b is the wave amplitude, k is the wave number related to the
wavelength k ¼ 2p=k, x is the wave angular frequency, and / is the
phase shift. Even though this traveling wave propagates with a wave
speed x=k, material points of the sheet do not move forward or back-
ward on average, and thus they represent a waving (rather than swim-
ming) sheet, which will be referred to as prescribed actuation further in
text. However, such sheet actuation generates a far-field flow,17 which
can result in non-zero hydrodynamic synchronization forces between
the two waving sheets.

The prescribed actuation strategy in Eq. (7) cannot be used to
model dynamic synchronization of two swimming sheets.
Furthermore, it does not account for a possible flexural rigidity of the
sheets. Model of a flexible sheet is shown in Fig. 1(b), where three
layers of sheet particles are interconnected by harmonic springs. The
spring potential is given by

UðlÞ ¼ fs
2

l � l0ð Þ2; (8)

where fs is the spring stiffness, l is its length, and l0 is the equilibrium
spring length. Actuation of the flexible sheets is performed using the
middle layer [marked red in Fig. 1(b)], where a harmonic angle
potential

UðhÞ ¼ fh

2
h� h0ð Þ2 (9)

is implemented for each pair of adjacent springs. Here, fh is the
potential strength, h is the instantaneous angle between two adja-
cent springs in the middle layer, and h0 is the spontaneous angle. A
traveling wave on the sheets is imposed by varying h0ðx; tÞ
¼ hb sin ðkxs � xtÞ, where hb is the angle amplitude and xs ¼ il0 is
the distance along the sheet with i representing particle numbering
along the middle layer. Flexural rigidity j of this model can be esti-
mated as j ¼ 2fsl

3
0 þ fhl0 (see the Appendix). In addition to the

parameters fh and hb, the actual wave amplitude in this case is

FIG. 1. Model schematic. (a) Setup and basic parameters of the two actuated
sheets. Here, b is the wave amplitude, k is the wave number, k ¼ 2p=k is the
wavelength, x is the wave frequency, such that the wave speed is x=k. h is the
distance between average positions of the sheets and /d is a phase difference
between their actuations. (b) Model representation of a flexible sheet constructed
by three particle layers interconnected by springs. h is the instantaneous angle
between two adjacent springs in the middle layer (marked in red), and h0 is the
spontaneous angle employed for sheet actuation.
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affected by the sheet flexural rigidity, wave frequency, and fluid
viscoelasticity. This model of sheet motion will be referred to as
internal actuation and allows the simulation of dynamic synchroni-
zation of two swimming sheets.

In simulations, the two sheets separated by a distance h between
their average positions are embedded into the modeled SDPD fluid.
Each sheet is constructed by three layers of particles and is driven
either through the prescribed actuation [see Eq. (7)] or by internal
actuation [see Eq. (9)]. The number density of sheet particles is the
same as that of fluid particles. Therefore, interactions between fluid
and sheet particles are identical to the fluid-fluid interactions. The sim-
ulation domain Lx � Ly is periodic in both dimensions. Note that the
periodicity in y direction leads to the fact that the simulation system
represents infinitely many sheets. However, we have verified for sev-
eral parameter sets that Ly is large enough to have a negligible effect on
synchronization results, and therefore, this periodic system is a good
approximation for two sheets in an infinite domain.

Basic simulation parameters are summarized in Table I. For the
reproducibility of simulation results, all simulation parameters are
explicitly specified in terms of the cutoff radius rc ¼ 1:6, reference
mass density qref ¼ 6:25, and dynamic viscosity gref ¼ 20, which also
define a reference pressure pref ¼ g2ref=ðr2c qref Þ and flexural rigidity
jref ¼ g2ref rc=qref . Nevertheless, all simulation results are pre-
sented in terms of relevant physical scales, such as a length scale
1=k and a timescale 1=x, or several non-dimensional groups
defined later.

C. Model validation

Since our SDPD formulation is practically reduced to SPH by
neglecting random terms, we can take advantage of rich SPH literature
for the method validation. For instance, a similar SPH formulation has
been used to simulate different fluid flows at low andmoderate Re,46,47

in good agreement with the corresponding analytical and/or finite-
element results. Note that SPH may become unstable at high Re.48 To
verify the correctness of SDPD implementation for Newtonian fluids,
wall-bounded Poiseuille flow and unsteady flow above an oscillating
plate (or Stokes second problem) were simulated, showing an excellent
agreement with the corresponding analytical solutions. The viscoelas-
tic Oldroyd-B model has also been validated using unsteady
Kolmogorov flow.37

In the context of swimming sheets, we revisit the problem of a
single waving sheet both in Newtonian and in viscoelastic fluids. An
inextensible 2D sheet actuated according to Eq. (7) generates a far-
field flow velocity VN in the x direction. The theoretical prediction of
VN is given by17

VN ¼
1
2
xb2k 1� 19

16
b2k2

� �
: (10)

Figure 2(a) compares simulation results for VN in a Newtonian fluid
to the theoretical prediction in Eq. (10), demonstrating an excellent
agreement. Here, Re 2 ½2:8� 10�4; 5:6� 10�3�, defined as
Re ¼ xb2q=g, remains small for all simulations in Fig. 2(a). The theo-
retical result by Tuck22 for Re > 0 is also shown in Fig. 2(a); however,
it is only of the order oðb2k2Þ and is therefore less accurate.

For viscoelastic Oldroyd-B fluids, a theoretical prediction for the
far-field velocity Vve generated by a waving sheet is given by45

Vve ¼
1
2
xb2k

1þ De2gs=g
1þ De2

; (11)

where gs is the solvent component of viscosity and De ¼ sx is the
Deborah number that represents a ratio of relaxation time to the char-
acteristic time of sheet motion. Figure 2(b) shows the comparison of
simulated Vve for a waving sheet in various viscoelastic fluids against
the analytical prediction in Eq. (11) as a function of De. The simula-
tion results (symbols) for various gs=g agree well with the analytical
prediction (solid line). The theoretical result for an infinite domain in
Eq. (11) has also been extended toward sheet swimming in an
Oldroyd-B fluid next to a boundary.49,50

III. RESULTS AND DISCUSSION

We investigate the synchronization of two sheets, and in particu-
lar, its dependence on inertial effects, fluid compressibility, sheet flex-
ural rigidity, and fluid viscoelastic properties. Two sheets placed side
by side with a distance h apart (see Fig. 1) can have a phase difference
in their motion given by /d ¼ /2 � /1. Generally, the synchroniza-
tion force in the x direction is a function of /d and can be approxi-
mated by a functional form motivated by theoretical predictions for
low amplitudes30,31

Fsð/dÞ ¼ �Fs sin ð/dÞ; (12)

where �Fs is the force amplitude. The synchronization forces on the
two sheets have the same magnitude, but different signs, which means
that they act in opposite directions. For the calculation of force ampli-
tude �Fs, several simulations for different /d values in the interval ½0;p�
(with an increment of p=30 for simulations with Newtonian fluids and
of p=15 for simulations with Oldroyd-B fluids) are performed, and the
resultant force data are fitted using Eq. (12). Note that the force ampli-
tude �Fs can also be negative, as the fitting is carried out within the
range ½0; p�. For bk� 0:5, the sine function in Eq. (12) is an accurate
representation of Fsð/dÞ. For bk> 0.5, even though synchronization
force profiles start departing from the sine form, fitting Fsð/dÞ with
the sine function still provides a good approximation of the force
amplitude �Fs.

TABLE I. Basic parameters used in simulations. The reference units are introduced
for the non-dimensionalization of all simulation parameters, so that the performed
simulations can easily be reproduced. The reference values represent parameter
magnitudes most frequently used in simulations.

Basic parameters Values (model units)

Cutoff radius rc 1.6
Reference mass density qref 6.25
Reference dynamic viscosity gref 20
Energy unit kB T 10�6

Size of the simulation domain Lx � Ly 12:5rc � 18:75rc
Wave number k 4p=Lx
Average number density d0 16=r2c
Average distance between the two sheets h 2:875rc
Angle potential strength fh 62:5g2ref=qref

Hydrostatic pressure p0 � pb 3:2g2ref=ðr2c qref Þ
Exponent in the EoS � 7
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There exist two possible synchronized configurations:

(i) /d ¼ 0—an in-phase configuration,
(ii) /d ¼ p—an opposite-phase configuration.

Due to the choice of initial sheet positions with a phase difference
0 � /d ¼ /2 � /1 � p in Fig. 1, the synchronization forces
Fs
1ð/dÞ ¼ �Fs

2ð/dÞ < 0 drive the sheets toward the in-phase configu-
ration with /d ¼ 0, while for Fs

1ð/dÞ ¼ �Fs
2ð/dÞ > 0, the opposite-

phase conformation with /d ¼ p is stable. Further, simulation results
will mainly be presented in terms of �Fs

1 for the first sheet only.

A. Synchronization in Newtonian fluids

1. Interaction of two waving sheets

Figure 3 presents synchronization force amplitudes of the first
waving sheet with prescribed actuation as a function of ts=td ¼ g=ðbqcÞ
for different values of sound speed c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p0�=q

p
. Here, ts=td charac-

terizes the interplay between inertial and fluid-compressibility
effects for synchronization, where ts ¼ b=c corresponds to a time-
scale of pressure (sound) wave and td ¼ b2q=g represents a viscous
diffusion timescale for momentum transfer. Despite the fact that the
viscous diffusion timescale is relevant here, symmetry breaking for
the synchronization of two sheets in an incompressible fluid is pro-
vided by the inertial term in Navier–Stokes equations, as at Re¼ 0,
no synchronization should occur.25 Therefore, the word “effect” will
always refer to the relevant symmetry breaking mechanism. For
instance, the expression “inertial effects” represents symmetry
breaking due to a non-negligible inertia, even though the synchroni-
zation proceeds due to viscous forces. For ts=td � 0:5, synchroniza-
tion forces in Fig. 3 favor the in-phase configuration when the
momentum transfer by compressional wave dynamics due to fluid
compressibility dominates. For ts=td � 0:5, fluid compressibility
effects can be neglected, and the opposite-phase synchronization is
mediated by viscous forces due to inertial effects. Note that in the

case of ts=td � 1 or when inertial effects dominate, �F s
1 is nearly

independent of ts=td (and also g) as shown in the inset of Fig. 3.
In the limit of incompressible fluid at Re¼ 0, no synchronization

(i.e., �Fs
1 ¼ 0) should occur for two interacting sheets having a reflec-

tion symmetry with respect to the y axis,25 which is the case for the
imposed sine wave here. Our simulation results in Fig. 3 show rela-
tively small but not vanishing synchronization forces for
Re 2 ½0:04; 1� and ts=td < 0:1. These arguments suggest that for an
incompressible fluid, inertial effects (i.e., Re > 0) should lead to the
stable opposite-phase configuration with �F s

1 > 0 that vanishes at
Re ¼ 0. For comparison, human sperm typically has a beating fre-
quency of f � 20Hz and an amplitude of b � 10 lm,51,52 resulting in

FIG. 2. Model validation. (a) Far-field velocity VN generated by a single waving sheet in a Newtonian fluid in comparison with the theoretical prediction by Taylor17 for Re¼ 0
[Eq. (10)] and by Tuck22 for Re > 0. Here, g=gref ¼ 20. (b) Comparison of simulated and theoretical far-field velocities Vve generated by a waving sheet in viscoelastic fluids
for various gs=g. The theoretical prediction corresponds to Eq. (11).

45 The simulation results collapse onto a single curve when Vve is normalized by V
0

Nð1þ De2gs=gÞ, where
V
0

N ¼ xb2k=2 is the first term of the Taylor’s prediction. Here, Np ¼ 3� 106 and gs=gref ¼ 20 are fixed. In all simulations, Lx � Ly ¼ 18:75rc � 31:25rc , bk¼ 0.25, and
p0=pref ¼ 40.

FIG. 3. Synchronization force amplitudes �F
s
1 of the first waving sheet with pre-

scribed actuation as a function of ts=td ¼ g=ðbqcÞ for different sound speeds
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p0�=q

p
in a Newtonian fluid. Both g and p0 are varied such that

g=gref 2 ½0:05; 10� and p0=pref 2 ½4; 1024�. Note that �F
s
2 ¼ ��F

s
1. In all cases,

x ¼ 0:4 and bk¼ 0.25. Inset shows that dimensional values of �F
s
1 fall onto a sin-

gle curve as a function of ts=td .
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Re � 0:01 and ts=td � 7� 10�5 in a water-like environment. For
existing microrobots, typical non-dimensional numbers are Re 	 oð1Þ
and ts=td 	 oð10�3Þ.23,24 Thus, inertial effects are expected to be perti-
nent for all microswimmers, while fluid compressibility can become
relevant to swimming in highly viscous fluids. For instance, the viscos-
ity of human mucus at low shear rates can be 104–106 times larger
than that of water,53 leading to ts=td values on the order of oð1Þ.

To systematically investigate the synchronization of inextensible
sheets, different parameters (other than g) are varied. Figure 4 shows
synchronization force amplitudes of the first waving sheet (prescribed
actuation) as a function of wave frequency x, wave amplitude b, and
fluid mass density q. In Fig. 4(a), ts=td ¼ 0:063 is independent of x,
and �F s

1 nearly vanishes at small x or Re values. Figures 4(b) and 4(c)
show that depending on ts=td , the opposite-phase configuration due to
inertial effects or the in-phase configuration due to fluid-
compressibility effects takes place, which is consistent with the results
in Fig. 3. When inertial effects dominate at ts=td � 0:5, the opposite-
phase conformation takes place, and the magnitude of �Fs

1 increases
significantly with increasing x, b, and q. Insets in Fig. 4 show that at
large enough values of these parameters, the synchronization force

amplitude �Fs
1 exhibits a power-law dependence with respect to the

wave frequency x, wave amplitude b, and fluid mass density q.
Remember that �Fs

1 is nearly independent of fluid viscosity g, when
fluid compressibility effects can be neglected, see the inset of Fig. 3.
Therefore, the results in Figs. 3 and 4 indicate that dimensionless syn-
chronization forces in the regime of inertial effects are proportional to
Re as

�Fs
1k

gx
/ Re: (13)

This equation remains valid even for relatively large bk values, as the
relation �Fs

1 / b2 holds up to bk¼ 0.75 in Fig. 5. As we will show later,
an increase in the synchronization force amplitude for large bk can be
much faster than b2 for viscoelastic fluids.

2. Dynamic synchronization of two flexible sheets

To investigate dynamic synchronization process of two beating
sheets, we employ the setup with two flexible sheets that have internal
actuation. To characterize synchronization dynamics, synchronization

FIG. 4. Synchronization force amplitudes of the first waving sheet (prescribed actuation) for various parameters. (a) �F
s
1 as a function of wave frequency x with bk¼ 0.25.

Here, ts=td ¼ 0:063. (b) �F
s
1 as a function of wave amplitude b with x ¼ 0:4. (c) �F

s
1 as a function of fluid mass density q. Here, x ¼ 0:4 and bk¼ 0.25. Other parameters,

such as g=gref ¼ 1 and p0=pref ¼ 256, are fixed in all simulations. Insets show absolute values of �F
s
1 in log-log plots.
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time ss is first introduced. Since our simulations demonstrate that for
bk� 0:5, the synchronization forces Fs

1 and Fs
2 have a sine-function

dependence on /d [see Eq. (12)], independently of the contributing
factors, such as fluid compressibility, inertial effects, and sheet flexibil-
ity, the dynamic synchronization process can be described as a
damped harmonic oscillator

d2/d

dt2
¼ �a1

d/d

dt
� a2 sin ð/dÞ: (14)

Here, a1 is a characteristic frequency and a2 is related to the synchroni-
zation force amplitudes �Fs

1 and �Fs
2, which are either negative or posi-

tive, depending on whether the in-phase or opposite-phase
configuration is stable. Note that the functional form of �Fs

1 and �Fs
2

departs from the sine function at large bk> 0.5, but Eq. (14) still
remains a reasonable approximation for dynamic synchronization.

In general, a1 can be a function of /d, but for simplicity, it is
assumed to be constant here. A process described by Eq. (14) can have
an oscillating dynamics, if the inertial term represented by the second
time derivative is large enough. Our simulations (not presented here)
have shown that an oscillation in the synchronization of two flexible
sheets may occur at high Re. However, in all cases studied here, Re is
small enough so that the synchronization process of two sheets can be
considered overdamped, even though it may be caused by inertial
effects. By neglecting the inertial term in Eq. (14), an Adler-like equa-
tion54 d/d=dt ¼ �a2=a1 sin ð/dÞ for /d is obtained, which has an
analytical solution given by55

/d ¼ 2 tan�1 tan
/0
d

2
e�a2t=a1

� �
; (15)

where /0
d is the initial phase difference at time t¼ 0. Equation (15) is

used to extract the synchronization time as ss ¼ ja1=a2j from simula-
tions of dynamic synchronization. Figures 6(a) and 7(a) show such fits
by dashed lines and demonstrate that they approximate well time-
dependent simulation data. Furthermore, the physical meaning and
dimensions of a1 and a2 suggest that a1 / x and a2 / x2�F sk=ðgxÞ,
resulting in

ss / g
�F sk

: (16)

Figure 6(a) shows time-dependent phase difference /d between
two flexible sheets for various ts=td (g is varied). At low enough ts=td ,
the sheets attain the opposite-phase configuration because of inertial
effects. As ts=td is increased, the in-phase configuration becomes stable
due to the combined effect of fluid compressibility mentioned above
and sheet flexibility that will be discussed below. Note that in the case
of internal actuation the wave amplitude b of flexible sheets is reduced
significantly by increasing g [see Fig. 6(b)] because of an increased vis-
cous resistance on the sheets. Nevertheless, the behavior of ss in Fig.
6(a) is non-monotonic with ts=td (or with g) due to several reasons. In

FIG. 5. Synchronization force amplitudes with non-negligible inertia as a function of
bk. Here, the non-dimensional force �F

s
1k=ðgxÞ is divided by x so that all data col-

lapse onto a single curve, as �F
s
1 / x2. The solid line represents a fit with quadratic

function. g=gref ¼ 1 and p0=pref ¼ 256 are used in simulations.

FIG. 6. Dynamic synchronization of two flexible sheets (internal actuation) for different ts=td (g is varied). (a) Phase difference plotted by symbols as a function of time. The
dashed lines correspond to data fitting using Eq. (15). (b) Beating wave amplitude b for various ts=td . Here, x ¼ 1:0; hb=p ¼ 0:028, j=jref ¼ 28:125; p0=pref ¼ 4, and
�¼ 5.
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the case of stable opposite-phase configuration (ts=td � 1 here), where
fluid inertial effects dominate, ss increases with increasing ts=td (also
with increasing g) because the synchronization force amplitude �Fs is
independent of g [see the inset of Fig. 3] and the synchronization time
is proportional to g=�Fs [see Eq. (16)]. The case of ts=td ¼ 1:13 exhibits
the largest ss, since it is near the opposite-phase to in-phase transition,
at which the synchronization force vanishes. With a further increase
in ts=td , the synchronization time first decreases due to an increase in
the synchronization forces, but then increases for ts=td � 2:96 due to
the decreasing beating amplitude shown in Fig. 6(b).

To directly demonstrate the effect of sheet flexibility, Fig. 7(a)
shows the transition from opposite-phase to in-phase configuration
for different a ¼ p4qbx2=ðjk4Þ, which represents the ratio of viscous
stresses 	qb2x2 (see Fig. 4) and bending stresses 	jb=ðk=2Þ4
¼ jbk4=p4 (flexural rigidity j is varied through the spring stiffness
fs). Here, fluid compressibility effects can be neglected as ts=td � 0:05.
Interestingly, stiff sheets (i.e., small a) synchronize toward the
opposite-phase configuration due to inertial effects, while soft sheets
are driven toward the in-phase conformation, even though the effec-
tive Re increases with increasing a due to an increase in wave ampli-
tude, see Fig. 7(b). Therefore, sheet flexibility drives the system of two
sheets toward the in-phase configuration for a � 1. This result is con-
sistent with the theory predicting that a finite elasticity of two sheets in
an incompressible fluid is sufficient to break the symmetry and exhibit
the in-phase synchronization at Re¼ 0.30 Furthermore, a simulation
study28 of a pair of flexible sheets based on the incompressible
Navier–Stokes equations reports the transition from in-phase to
opposite-phase conformation with increasing Re, in agreement with
the discussed results.

Considering �Fs
1k=ðxgÞ / Re that has been hypothesized in Eq.

(13) for two waving sheets, the synchronization time ss normalized by
the wave frequency x simply becomes

ssx / 1
Re
: (17)

This relation is tested by a number of simulations for various x, q, g,
and hb values. Figure 8(a) shows ss for j=jref ¼ 20:63 and p0=pref

¼ 256 as a function of Re. When inertial effects dominate at large
enough Re, ss is inversely proportional to Re, as predicted. At low Re,
where ts=td and a increase, the effects of fluid compressibility and
sheet flexibility become important, so that ss deviates from the relation
in Eq. (17). Figure 8(b) presents simulation data for j=jref ¼ 35:63
and p0=pref ¼ 1024, such that both fluid compressibility and sheet
flexibility effects are significantly reduced. The behavior of ss closely
follows the relation in Eq. (17) for a wide range of Re numbers.
Noteworthy, the rapid increase in ss at small Re in Fig. 8 is qualita-
tively consistent with the theoretical prediction that no synchroniza-
tion of two inextensible sheets having a reflection symmetry with
respect to the y axis can occur at Re¼ 0.45

B. Synchronization in viscoelastic fluids

Fluid elasticity is also sufficient to break the symmetry and result
in the in-phase synchronization of two inextensible sheets at Re¼ 0.31

Theoretical prediction for the synchronization force between two
sheets up to the order oðb2k2Þ is given by31

Fs
1ð/dÞk
xg

¼ 2pDU
kh
�

4pDegp
gð1þ De2ÞAðkhÞ sin ð/dÞ

" #
ðbkÞ2;

AðkhÞ ¼ khcoshðkhÞ þ sinhðkhÞ
coshð2khÞ � 2k2h2 � 1

;

(18)

where DU is the relative velocity of two sheets and g ¼ gp þ gs
includes polymer and solvent viscosity contributions. In the case of
two waving sheets with prescribed actuation, DU ¼ 0. Note that for
DU ¼ 0, the synchronization force in Eq. (18) can be written as
Fs
1ð/dÞ ¼ �Fs

1 sin ð/dÞ, which is identical to Eq. (12) hypothesized
before.

Figure 9(a) presents the non-dimensional force �Fs
1k=ðxgÞ

obtained from a number of simulations (symbols) of two waving
sheets in viscoelastic fluids with respect to the theoretical prediction
(solid lines) in Eq. (18) for several bk values. An excellent agreement
between simulated and theoretical synchronization force amplitudes is
achieved. In these simulations, the wave frequency x 2 ½0:4; 1:6�,

FIG. 7. Synchronization of two flexible sheets for various a ¼ p4qbx2=ðjk4Þ that characterizes competition between viscous and bending stresses. (a) Phase difference /d.
Simulated data are shown by symbols, while the dashed lines represent fits using Eq. (15). (b) Wave amplitude b. Here, j=jref 2 ½15:86; 20:63�; x ¼ 0:8;
g=gref ¼ 1; hb=p ¼ 0:044, and p0=pref ¼ 256.
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wave amplitude bk, and relaxation time s are varied, while the viscosi-
ties gs=g ¼ 0:1875 and gs=gref ¼ 0:9375 are kept constant. Note that
the values of Np and s are adjusted to keep gp ¼ kBTd0Nps fixed. In
all simulations, ts=td 
 0:1 to minimize inertial effects. Fluid com-
pressibility effects can also be neglected, because the ratio
ts=s ¼ b=ðcsÞ, which compares compressibility and viscoelasticity
effects, is much smaller than unity for all s values used in simulations.

Figure 9(b) demonstrates that the simulated force amplitudes
scaled as �Fs

1=ðxgb2kÞ fall onto a single master curve that is well cap-
tured by the theoretical prediction in Eq. (18). Furthermore, Fig. 9
shows that the maximum synchronization force is achieved at De ¼ 1
for a fixed bk and x. Noteworthy, for a fixed x, the synchronization

force amplitude asymptotically approaches zero with increasing De or
s. This indicates that the synchronization of flagellated micro-
swimmers must be weak in viscoelastic fluids with a large relaxation
time. In fact, De for realistic biological microswimmers can be signifi-
cantly larger than unity. For instance, De is between 102 and 103 for
the case of sperm cells swimming in mucus, whose relaxation time is
in the range of 1–10 s.31

Figure 10(a) presents dynamic synchronization of two flexible
sheets for various De, and demonstrates that this process is fastest at
De ¼ 1, in agreement with the theoretical prediction in Eq. (18). The
corresponding beating wave amplitudes shown in Fig. 10(b) are small
enough in these simulations, such that the theoretical prediction is

FIG. 8. Dependence of synchronization time ss on x and Re. (a) Simulations with j=jref ¼ 20:63 and p0=pref ¼ 256. Different datasets are plotted by symbols, correspond-
ing to hb=p ¼ 0:028 (blue circles); hb=p ¼ 0:044 (red down-pointing triangles); hb=p ¼ 0:089 (green left-pointing triangles); g=gref ¼ 0:5 and hb=p ¼ 0:044 (yellow
squares); q=qref ¼ 2 and hb=p ¼ 0:044 (purple right-pointing triangles); and q=qref ¼ 4 and hb=p ¼ 0:044 (black up-pointing triangles). (b) Simulations with j=jref
¼ 35:63 and p0=pref ¼ 1024. Various symbols represent hb=p ¼ 0:044 (blue circles); hb=p ¼ 0:067 (red down-pointing triangles); hb=p ¼ 0:089 (green left-pointing trian-
gles); g=gref ¼ 0:5 and hb=p ¼ 0:089 (yellow squares); hb=p ¼ 0:11 (purple right-pointing triangles); q=qref ¼ 4 and hb=p ¼ 0:089 (black up-pointing triangles). Each set
of data includes several x values in the range ½0:2; 1:0�. If not explicitly specified, g=gref ¼ 1 and q=qref ¼ 1 are used in simulations. The dashed lines indicate Re�1.

FIG. 9. Synchronization force amplitudes of two waving sheets (prescribed actuation) in viscoelastic fluids. (a) �F
s
1k=ðxgÞ and (b) �F

s
1=ðxgb2kÞ as a function of De for various

bk. Different simulation datasets are plotted by symbols, corresponding to x ¼ 0:4 (red circles); x ¼ 0:8 (blue squares); x ¼ 1:2 (green down-pointing triangles); and
x ¼ 1:6 (yellow left-pointing triangles). Solid lines are theoretical predictions31 from Eq. (18). Here, gs=g ¼ 0:1875; gs=gref ¼ 0:9375, and q=qref ¼ 0:064 are fixed in all
simulations.
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accurate. Interestingly, the synchronization times in viscoelastic fluids
have similar magnitudes as those in Newtonian fluids (compare with
Figs. 6 and 7).

According to the theoretical prediction in Eq. (18),31 the synchro-
nization forces resulting from fluid viscoelasticity are of the order
oðb2k2Þ, which is similar to the synchronization forces originating
from inertial effects, see Eq. (13). Therefore, it is plausible to expect the
transition from in-phase to opposite-phase configuration with increas-
ing Re in viscoelastic fluids. Figure 11 illustrates the competing effects
of viscoelasticity and inertia characterized by a dimensionless parame-
ter Reð1þ De2Þ=De. This definition is motivated by Eq. (13), where
the synchronization force due to fluid inertia is proportional to
qxb2=k, and by Eq. (18) with �Fs 	 xgDe=ð1þ De2Þ=k due to

viscoelasticity. As shown in the inset of Fig. 11, the resultant synchro-
nization forces for different q (affecting the value of Re) and x (affect-
ing the value of De) fall approximately onto a single curve as a
function of Reð1þ De2Þ=De. Clearly, the in-phase to opposite-phase
transition occurs at large enough Reð1þ De2Þ=De values.
Interestingly, this transition can be triggered not only by increasing
Re, but also by increasing De provided that De
 1. This can be ratio-
nalized by the fact that when x is fixed, viscoelastic synchronization
forces asymptotically approach zero with increasing De [see Eq. (18)].

The prediction that synchronization of two sheets with a fixed x
is weak at large De seemingly disagrees with recent experimental34 and
numerical56 studies on sperm interaction, which demonstrate that
fluid viscoelasticity can significantly enhance clustering. Note that the
theoretical prediction by Taylor17 in Eq. (10) is of the order oðb4k4Þ
and has been shown to be accurate for bk� 0:4.57 The theoretical pre-
diction in Eq. (18) for Oldroyd-B fluids31 is of the order oðb2k2Þ, such
that it is reliable for small bk as verified by our simulations in Fig. 9,
but is expected to be less accurate for large bk values. Furthermore,
there exist a number of experimental studies9,10,34,52 with flagellated
microswimmers, whose wave amplitude is large enough to make the
assumption of small bk invalid. Figure 12 shows synchronization force
amplitudes of two waving sheets in viscoelastic fluids for bk¼ 0.5,
bk¼ 0.63, and bk¼ 0.75. The simulation parameters here are the same
as those in Fig. 9. Clearly, the simulated �Fs

1 values for large bk are sig-
nificantly larger than those predicted theoretically at large De. This
demonstrates that for bk> 0.4, fluid viscoelasticity plays a much more
prominent role for sheet synchronization than predicted theoretically
for small bk. Interestingly, the dependence of �Fs

1 on bk> 0.4 has an
exponent that can be significantly larger than two. For comparison, an
increase in the synchronization force for Newtonian fluids at large
enough Re and bk> 0.4 is proportional to b2, as shown in Fig. 5.
Therefore, our simulations demonstrate that fluid viscoelasticity is the
main cause of a tremendous increase in synchronization forces at large
bk and De, providing a plausible explanation for the enhanced cluster-
ing of flagellated microswimmers in viscoelastic fluids.

Note that the Oldroyd-B model becomes unphysical when the
Weissenberg number, which relates fluid relaxation time to the time

FIG. 10. Dynamic synchronization of two flexible sheets mediated by fluid viscoelasticity. (a) Phase difference /d as a function of time for different De. Dashed lines represent
fits using Eq. (15). (b) Beating wave amplitudes. Here, gs=g ¼ 0:1875; gs=gref ¼ 0:9375, q=qref ¼ 0:125; x ¼ 0:5; hb=p ¼ 0:056; j=jref ¼ 28:125, and p0=pref ¼ 640.

FIG. 11. Synchronization force amplitudes of two waving sheets in viscoelastic flu-
ids for different q=qref 2 ½0:125; 1�, affecting the value of Re, and for different
x 2 ½0:1; 1:6�, changing the value of De. The inset shows that �F

s
1 fall nearly onto

a single curve when presented as a function of Reð1þ De2Þ=De. Other parame-
ters bk¼ 0.17, gs=g ¼ 0:375; gs=gref ¼ 1:875, and p0=pref ¼ 640 remain fixed.
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determined by a characteristic strain rate, approaches Wi � 1. As a
precautionary step, the Oldroyd-B model has been tested using
Kolmogorov flow, leading to accurate results for Wi� 0:8, while for
Wi� 0:9 the SDPD simulations become unstable. For the synchroni-
zation problem of two sheets, Weissenberg number can be defined as
Wi ¼ sb=ðk=f Þ ¼ bkxs=ð2pÞ2 with f ¼ x=ð2pÞ. For example, simu-
lation results in Fig. 9 agree well with the analytical solution in Eq.
(18) and correspond to Wi 2 ½2:5� 10�4; 0:26� for bk¼ 0.25. For
comparison, Wi 2 ½5� 10�4; 0:41� for bk¼ 0.5 in Fig. 12(a),
Wi 2 ½6:4� 10�4; 0:36� for bk¼ 0.63 in Fig. 12(b), and Wi
2 ½7:6� 10�4; 0:24� for bk¼ 0.75 in Fig. 12(c). Therefore, all pre-
sented results are well within the limit of Oldroyd-B model applicabil-
ity, confirming that the dramatic increase in synchronization forces at
large De and bk is not due to any model shortcomings.

C. Swimming efficiency of two synchronized sheets

Different mechanisms, such as inertia, sheet elasticity, and
fluid compressibility and viscoelasticity, can contribute to the syn-
chronization of two sheets. An interesting question is whether the
behavior of two synchronized sheets is different from that of a

single sheet. In the early work of Taylor,17 it has been shown that
energy dissipation of two sheets at Re¼ 0 is minimized (maxi-
mized) when they attain the in-phase (opposite-phase) configura-
tion. More recent theoretical study25 reports that the stable
synchronized phase is not necessarily the phase with a minimum
energy dissipation. There exist numerous examples of biological
microorganisms swimming in clusters, suggesting that collective
swimming may have some advantages. A numerical study about
sperm swimming6 reports that clustered sperms swim slower, and
consume a lower amount of energy per sperm than a single one
alone. However, it is not clear whether different factors (e.g., iner-
tia, sheet elasticity, and fluid viscoelasticity) affect the properties of
synchronized sheets in a qualitatively similar way.

Figure 13 compares output power, swimming velocity, and effi-
ciency of a pair of synchronized sheets with those of a single sheet. In
these simulations, two sheets are let to fully synchronize, and after that
the aforementioned measurements are performed. Three different syn-
chronization factors are considered, including sheet synchronization
dominated by inertial effects (denoted as “IN”), sheet elasticity
(abbreviated as “SE”), and fluid viscoelasticity (denoted by “VE”).

FIG. 12. Synchronization force amplitudes as a function of De for (a) bk¼ 0.5, (b) bk¼ 0.63, and (c) bk¼ 0.75. As bk is increased, synchronization forces strongly increase
at large enough De. Note that for large bk, the dependence of Fs on phase difference /d is no longer a sine function. Therefore, �F

s
1 corresponds to the maximum of Fs1ð/dÞ

here. Other parameters gs=g ¼ 0:1875; gs=gref ¼ 0:9375; q=qref ¼ 0:064, and p0=pref ¼ 640 remain fixed. In all cases, Reð1þ De2Þ=De� 1.
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Figure 13(a) presents total output power for the three cases, which is
computed as P ¼ �

P
i�N
P

j�M Fij � vi, where N is the total number
of sheet particles, M is the total number of fluid particles, and Fij are
interparticle forces. Note that only for the inertia-dominated case, the
output power of a synchronized pair is larger than that of a single sheet.
This is due to the fact that the sheets synchronize to the opposite-phase
conformation, for which the dissipation energy is largest in Stokes flow
regime (Re here is smaller than 0.04). Interestingly, swimming veloci-
ties of a synchronized pair and a single sheet do not differ much, see
Fig. 13(b). Only in the “SE” case, the swimming velocity of a single
sheet is slightly larger than that of the pair. These results indicate that
only in the “VE” case, the synchronized pair of sheets swims not slower
than the corresponding single sheet, and has a lower output power.

Figure 13(c) presents swimming efficiency e ¼ Peff=P for differ-
ent cases, where Peff ¼ �Fdrag

x Vx is the effective power with Fdrag
x

being the x component of drag forces exerted by the fluid on the sheets
and Vx is the swimming speed. Note that the total force exerted by
fluid on a swimmer is always zero, but it can be divided into propulsive

and drag components. The propulsive component is due to normal
stresses, while the drag component corresponds to tangential stresses.
In the case of dominating inertial effects, the swimming efficiency
(about 2%–3%) is largest, and the synchronized pair is slightly more
efficient than a single sheet. In case when sheet-elasticity effects domi-
nate, the pair has a lower efficiency than the single sheet. Finally, in the
case of dominating viscoelastic contributions, the swimming efficiency
is smallest and there is no difference in e for the synchronized pair and
single sheet. Nevertheless, swimming efficiency may not be an appro-
priate measure to clearly determine possible advantages/disadvantages
of synchronized swimming. For example, for the “IN” case in Fig. 13,
the efficiency and total output power are larger for the synchronized
pair than for the single sheet, but the swimming speed is nearly the
same. In this case, the sheets synchronize toward the opposite-phase
configuration, which results in a relatively strong backward (peristaltic-
like) flow between them, thus increasing the resistance for swimming.
Finally, Fig. 13(d) shows that wave amplitudes are nearly the same for
both the synchronized pair and single sheet in all cases.

FIG. 13. Swimming properties of two synchronized sheets in comparison with a single sheet. (a) Sheet output power P, (b) swimming velocity V, (c) swimming efficiency e,
and (d) beating amplitude b for various conditions. The abbreviation “IN” denotes Newtonian-fluid simulations, in which inertial effects dominate, with the following parameters
g=gref ¼ 0:5; hb=p ¼ 0:044, j=jref ¼ 20:63, and p0=pref ¼ 256. The abbreviation “SE” denotes Newtonian-fluid simulations, in which the effect of sheet flexibility domi-
nates, with simulations parameters hb=p ¼ 0:028, j=jref ¼ 15:86, and p0=pref ¼ 256. “VE” corresponds to non-Newtonian-fluid simulations with dominating viscoelastic
effects for simulation parameters gs=g ¼ 0:1875; gs=gref ¼ 0:9375; q=qref ¼ 0:125; hb=p ¼ 0:056; j=jref ¼ 28:125, and p0=pref ¼ 640.
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IV. CONCLUSIONS

We have employed numerical simulations to study the effect
of inertia, sheet flexibility, and fluid compressibility and visco-
elasticity on the synchronization of two inextensible or flexible
sheets. Table II shows the summary of all results. Inertial effects
always lead to sheet synchronization toward the opposite-phase
configuration. When inertial effects dominate, the synchroniza-
tion time ss of two sheets is inversely proportional to the
Reynolds number, such that ssx / Re�1. Both fluid compressibil-
ity and sheet flexibility drive synchronization toward the in-
phase configuration, and compete with inertial effects for Re > 0.
Furthermore, we have systematically tested the theoretical pre-
diction31 of the synchronization forces between two sheets in vis-
coelastic fluids, favoring the in-phase configuration. Our
simulation results are in excellent agreement with the theoretical
prediction for bk< 0.4; however, for large bk, synchronization
forces strongly depart from the theory for De > 1, indicating a
rapid synchronization. Thus, for De > 1 and large enough bk,
fluid viscoelasticity has a dramatic effect on the synchronization
of two sheets, which clearly dominates over other factors, such as
inertia and sheet elasticity. This result is consistent with the
observations of significant enhancement of sperm clustering in
viscoelastic fluids.34 Finally, sheet synchronization dominated by
fluid viscoelasticity does not impede swimming velocity of the
synchronized pair, but has a lower output power in comparison
with a single sheet.

Simulation results presented here constitute a systematic study of
competing effects for the synchronization of two sheets. They can be
used to qualitatively assess the importance of possible factors for
experimentally observed interactions between biological micro-
swimmers or artificial microrobots. This knowledge is useful for a bet-
ter understanding of collective behavior of microswimmers and for
tuning of synchronization interactions between artificial microrobots.

ACKNOWLEDGMENTS

C.M. acknowledges the funding by the China Scholarship
Council (CSC) and German Academic Exchange Service (DAAD)
through the Sino-German (CSC-DAAD) Postdoc Scholarship
Program. We gratefully acknowledge the computing time granted
through JARA-HPC on the supercomputer JURECA58 at
Forschungszentrum J€ulich.

APPENDIX: CALCULATION OF FLEXURAL
RIGIDITY j

We consider a ring (see Fig. 14) whose structure is similar to
the sheet in Fig. 1(b). In continuum, elastic energy of the ring is
given by

E ¼ j
2

ð
2pR

dl
R2
¼ pj

R
; (A1)

which can be compared with the energy of a discrete structure. The
force balance at O1 yields

2fsðl1 � l0Þ sin
h
2
¼ 2fs

ffiffiffi
5
p

2
l0 � l2

� �
� 2ffiffiffi

5
p ; (A2)

resulting in

l2 �
ffiffiffi
5
p

2
l0 � Dl

h
2

� �
; (A3)

with Dl ¼ l1 � l0. Under the assumption that the middle layer does
not deform, the force balance at O2 leads to l2¼ l3. From the dis-
crete geometry in Fig. 14, we obtain

R
l0
¼

Rþ 2ffiffiffi
5
p l2

l0 þ Dl
) Dl ¼ 2l20R

2R2 þ l20
: (A4)

FIG. 14. Schematic of a ring used for the calculation of sheet flexural rigidity j. R is
the ring radius, l1;…; l4 are lengths of the corresponding springs, and h is the angle
between two adjacent springs in the middle layer. Equilibrium lengths are l01 ¼ l04
¼ l0 and l02 ¼ l03 ¼

ffiffiffi
5
p

l0=2.

TABLE II. Different factors which lead to the synchronization of two sheets toward the in-phase or opposite-phase configurations. When several factors are present, the final
configuration is determined by their competition.

Factors Theory Simulation

No inertia (Re¼ 0) No synchronization (incompressible fluid,
inextensible sheets)25

Inertia (Re> 0) Opposite-phase configuration (this study and Ref. 28)
Asymmetric wave In-phase or opposite-phase configuration, depending

on the asymmetry (Re¼ 0)25,27

Sheet flexibility In-phase configuration (Re¼ 0)30 In-phase configuration (Re> 0, this study)
Fluid compressibility In-phase configuration (Re> 0, this study)
Fluid viscoelasticity In-phase configuration31 In-phase configuration (this study and Ref. 32)
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Then, the elastic energy of the discrete structure is given by

Ed ¼ Nfs Dl2 þ 5
8
Dl2h2

� �
þ N

fh

2
h2: (A5)

By substituting Dl and h ¼ l0=R into the equation above, we obtain

Ed �
2pfsl

3
0 þ pfhl0
R

; (A6)

which results, when compared with Eq. (A1), in the expression for
flexural rigidity j as

j ¼ 2fsl
3
0 þ fhl0: (A7)
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