001     903744
005     20230123110545.0
024 7 _ |a 10.1103/PhysRevResearch.4.013038
|2 doi
024 7 _ |a 2128/31201
|2 Handle
024 7 _ |a altmetric:121284453
|2 altmetric
024 7 _ |a WOS:000759216100004
|2 WOS
037 _ _ |a FZJ-2021-05384
082 _ _ |a 530
100 1 _ |a Herrig, Tobias
|0 P:(DE-Juel1)179462
|b 0
|e Corresponding author
245 _ _ |a Cooper-pair transistor as a minimal topological quantum circuit
260 _ _ |a College Park, MD
|c 2022
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653476072_22562
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The outlook of protected quantum computing spurred enormous progress in the search for topological materials, sustaining a continued race to find the most experimentally feasible platform. Here we show that one of the simplest quantum circuits, the Cooper-pair transistor, exhibits a nontrivial Chern number which has not yet been discussed, in spite of the exhaustive existing literature. Surprisingly, the resulting quantized current response is robust with respect to a large number of external perturbations, most notably low-frequency charge noise and quasiparticle poisoning. Moreover, the fact that the higher bands experience crossings with higher topological charges leads to all the bands having the same Chern number, such that there is no restriction to stay close to the ground state. Remaining small perturbations are investigated based on a generic master equation approach. Finally, we discuss a feasible protocol to measure the quantized current.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Riwar, Roman
|0 P:(DE-Juel1)168366
|b 1
|u fzj
773 _ _ |a 10.1103/PhysRevResearch.4.013038
|g Vol. 4, no. 1, p. 013038
|0 PERI:(DE-600)3004165-X
|n 1
|p 013038
|t Physical review research
|v 4
|y 2022
|x 2643-1564
856 4 _ |u https://juser.fz-juelich.de/record/903744/files/Invoice_INV_21_DEC_007407.pdf
856 4 _ |u https://juser.fz-juelich.de/record/903744/files/PhysRevResearch.4.013038.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:903744
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168366
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-16T10:08:58Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-16T10:08:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21