
PHYSICAL REVIEW RESEARCH 4, 013038 (2022)

Cooper-pair transistor as a minimal topological quantum circuit
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The outlook of protected quantum computing spurred enormous progress in the search for topological
materials, sustaining a continued race to find the most experimentally feasible platform. Here we show that
one of the simplest quantum circuits, the Cooper-pair transistor, exhibits a nontrivial Chern number which has
not yet been discussed, in spite of the exhaustive existing literature. Surprisingly, the resulting quantized current
response is robust with respect to a large number of external perturbations, most notably low-frequency charge
noise and quasiparticle poisoning. Moreover, the fact that the higher bands experience crossings with higher
topological charges leads to all the bands having the same Chern number, such that there is no restriction to stay
close to the ground state. Remaining small perturbations are investigated based on a generic master equation
approach. Finally, we discuss a feasible protocol to measure the quantized current.
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I. INTRODUCTION

Topological phases are an important research topic in
condensed matter physics [1] most notably with the goal
to realize inherently protected quantum computing [2]. The
most common approach is to search for topological transi-
tions in the band structure of the materials themselves [3–5],
such as in topological insulators [6–10], Chern insulators
[11–13], Weyl and Dirac semimetals exhibiting Fermi-arc
surface states [14–19] or topological superconductors hosting
Majorana fermions [20–32]. However, the realization of topo-
logical materials turns out to be challenging due to various
reasons, such as a lack of tunability, detrimental effects of im-
purities [33–36], or quasiparticles in Majorana-based systems
[37–41]. A further challenge concerns the direct observability
of the topological invariant; often the topological phase is
only indirectly measured through the density of states, e.g.,
via ARPES [17] or STM [42].

This is why alternatives are actively researched, where
the topological phase is encoded in other degrees of free-
dom. Circuit lattices [43–53] may form metamaterials where
topological numbers are defined through the lattice de-
grees of freedom, which, however, requires the control
of a large number of circuits. Topological materials are
also very straightforwardly simulated when considering the
space spanned by the control parameters of superconduct-
ing qubits [54–56], where it remains, however, unclear, how
physics related to protected edge states may be observed.
Such limitations may be circumvented by recently proposed
topological transitions in multiterminal Josephson junctions
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[29–31,57–65] which give rise to topological phases even
when using only trivial materials [66–76]. Here Weyl points
are found in the space of superconducting phase differences
acting as quasimomenta, and a Chern number can be di-
rectly accessed through a quantized transconductance [66].
While topological transitions in transport degrees of freedom
offer a promising new approach, the proposal in Ref. [66]
came with the experimental complication of needing small

FIG. 1. Circuit of the Cooper-pair transistor and quantized dc
current responses. The two Josephson junctions are described by the
energies EJL and EJR. We apply a voltage V between the left and right
lead with superconducting phases φL and φR, which drives the phase
difference adiabatically according to the second Josephson relation.
The charge and phase of the superconducting island are described by
the conjugate variables N̂ and ϕ̂. The linearly time-dependent gate
voltage Vg(t ) induces a dc current Iind ∝ V̇g which flows (a) entirely
through the right junction if EJR > EJL and (c) entirely through the
left junction if EJR < EJL . (b, d) The dc parts of the expectation
values of the currents coming from the right and left lead, 〈IR〉
and 〈IL〉, respectively, are depicted under adiabatic conditions as a
function of EJR/EJL .
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multiterminal junctions containing only a few channels, which
are at the same time strongly tunnel coupled. An important
simplification was recently proposed by means of Weyl points
in standard SIS junction circuits [77–81]. However, these
proposals require a control of the offset charges on the order
of a single electron charge e which may be experimentally
challenging [82–84] unless offset-charge feedback loops are
employed [85].

Here we consider the Cooper-pair transistor, consisting of
two tunnel junctions with a superconducting island in be-
tween; see Fig. 1. Although this circuit has been studied to a
great extent [86–99], the Weyl points it exhibits in its band
structure have, to the best of our knowledge, not yet been
discussed. Additionally to the phase difference across the two
junctions, we use the island offset charge to define the Chern
number which gives rise to a topological phase transition
when the asymmetry of the Josephson energies changes its
sign. This Chern number leads to a quantized dc current
response into a particular lead when driving both the offset
charge and the phase difference time dependently (see Fig. 1).

Remarkably, the quantization of the current response is
insensitive to low-frequency offset-charge noise; in fact, it
is actually beneficial for the convergence of the response.
Furthermore, we find that the Chern number is insensitive to
quasiparticle poisoning. Moreover, the crossings in the higher
bands occur via Weyl points with higher topological charges.
As a result, each band carries the same Chern number such
that it is not required to be in the ground state to observe the
effect. This is a surprising exception because usually in quan-
tum systems, the ground and excited states exhibit different
topological numbers, a fact which recently lead to the effort
of generalizing topological phase transitions to systems out of
equilibrium [100–109]. Motivated by the above remarkable
protection, we analyze the influence from the environment
more closely by means of a generic master equation. Based
on this, we expect that the leading-order deviation of the
quantized current remains small. Finally, we discuss an exper-
imentally feasible protocol to measure the quantized current.
This protocol is to some extent reminiscent of Cooper-pair
pumps [79–81,110–113], with the notable difference that pre-
viously studied pumps do suffer from quasiparticle poisoning
[113].

Compared to the above vast existing literature on topo-
logical quantum systems, the effect we study here has the
following advantages. First, we do not need any topological
materials nor a network of coupled circuits to find topological
phase transitions—a single circuit made of regular s-wave
superconductors suffices. What is more, compared to similar
recent proposals, this circuit has only two terminals and works
already by means of standard SIS junctions. In fact, as we will
show below, all independent system parameters entering the
Hamiltonian play a crucial role for the observed topological
effect, leaving no “spare” degrees of freedom. It is in this
sense that we refer to our system as a minimal topological
circuit.

This paper is structured as follows. In Sec. II we review
the Hamiltonian of the Cooper-pair transistor and discuss its
topological features. Afterwards, in Sec. III we show how to
access the Chern number by varying specific system param-
eters in time. In Sec. IV we start with a short discussion of

FIG. 2. Energy spectrum and its topological properties. Dis-
played are the lowest four energy bands for φ = φR − φL = π as a
function of the offset charge Ng for three cases where the junction
asymmetry changes from EJR < EJL over EJR = EJL to EJR > EJL . In
the symmetric case (b) one can see the Weyl points as band crossings,
each associated with a topological charge C. In the asymmetric cases
(a, c) each band n can be assigned a Chern number CR,n, which is
zero in the trivial phase and changes only when passing through a
Weyl point. Due to the topological charges increasing by one with
each higher Weyl point, the Chern numbers for the different bands
all change by the same value.

the robustness of the resulting quantized dc current response
with respect to the most common perturbations, followed by
the introduction of a generic open-system description to dis-
cuss the leading-order perturbation to the otherwise protected
quantization of the current response. The concrete experimen-
tal realization will be the topic of the final Sec. V, where we
propose a practical measurement scheme.

II. THE CIRCUIT AND ITS TOPOLOGY

We here investigate the topological properties of the
Cooper-pair transistor, consisting of two Josephson junctions
connected in series with energies EJL and EJR [see Fig. 1(a)]
forming a charge island, which is capacitively coupled to a
gate voltage Vg. The Hamiltonian is given by

Ĥ (Ng, φL, φR) =EC

2
(N̂ + Ng)2 − EJL cos (̂ϕ − φL )

− EJR cos (̂ϕ − φR). (1)

The first term describes the charging energy of the super-
conducting island with the Cooper-pair number operator N̂
and EC = (2e)2/(CL + CR + Cg), where CL, CR, and Cg are
the capacitances of the two junctions and the gate capaci-
tor, respectively. The gate voltage induces the charge offset
Ng = CRφ̇R/(2e)2 + CLφ̇L/(2e)2 + CgVg/2e. The phase oper-
ator ϕ̂ is canonically conjugate to the number of Cooper
pairs, such that [̂ϕ, N̂] = i. Due to charge quantization, we
can write the Hamiltonian in the discrete charge basis with
N̂ = ∑

N N |N〉〈N | and eîϕ = ∑
N |N〉〈N − 1|. We denote the

eigenenergies and eigenvectors of Ĥ as εn and |n〉, respec-
tively, which correspond to the standard Mathieu functions
[86,114]. The energy spectrum is shown in Fig. 2.

While this system has already been extensively studied
[86–99], it has to the best of our knowledge not yet been
explicitly remarked that it harbors nontrivial Chern numbers
in the base space given by the charge offset Ng and the phase
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difference φ = φR − φL,

Cα,n =
∫ 1

0
dNg

∫ 2π

0

dφ

2π
Bα,n(Ng, φ), (2)

with the Berry curvature Bα,n = −2 Im〈∂φα
n|∂Ngn〉 (α =

L, R). In fact, the transistor thus simulates a Chern insulator,
where the parameter pair (Ng, φ) acts as the Brillouin zone
on a 2D torus [115]. Let us now explain the origin of the
nontrivial Chern number in the remainder of this section.

First, we note that the Chern number defined in Eq. (2),
as well as the corresponding Berry curvature, carry the in-
dex α = L, R, indicating that there are actually two distinct
Chern numbers (Berry curvatures) for one and the same
band. The reason for this is the following. The eigenener-
gies depend on only the total phase difference, εn(φ), such
that ∂φL εn = −∂φRεn. This stems from the fact that φα can
be “eliminated” by the unitary transformation ÛαĤÛ †

α with
Ûα = eiφα N̂ [e.g., ÛLĤ (Ng, φL, φR)Û †

L = Ĥ (Ng, 0, φR − φL )].
In other words, the eigenenergies are insensitive to a unitary
change of basis. The eigenvectors on the other hand are not,
and therefore the two Berry curvatures BL,n and BR,n are
nontrivially related via

BL,n + BR,n = −∂Ng〈N̂〉n. (3)

This is a consequence of the current conservation law,∑
α ∂φα

Ĥ = i[Ĥ , N̂], which we will come back to in Sec. III.
Note that while Bα,n depends thus on α, it depends explicitly
on only the phase difference, Bα,n(Ng, φR − φL ), which is why
it is sufficient to integrate over φ in Eq. (2).

Based on Eq. (3), we can also relate the Chern numbers for
different α,

CL,n + CR,n = +1, (4)

since
∫ 1

0 dNg ∂Ng〈N̂〉n = −1. On a formal level, this difference
between the Chern numbers for different α is a simple con-
sequence of the definition in Eq. (2). On a physical level,
this difference will become meaningful in Sec. III, as the
difference of measuring the current from the left or from the
right contact. In fact, the physics will be engrained in the very
structure of the Berry curvature: a current measurement into
contact α (∂φα

) as a response to a driving of Ng (∂Ng).
The Chern numbers, as defined above, must be quantized,

in accordance with standard literature [116]. One way to ex-
plicitly calculate their actual values, would be by inserting the
Mathieu functions into the Berry curvature and performing
a numerical calculation of the values of the Chern numbers.
However, we here resort to a simpler way which is inspired
by Ref. [66].

Namely, the nonzero Chern numbers are a consequence
of Weyl points (that is, topologically protected band crossing
points) appearing in the 3D space given by (Ng, φ, EJR/EJL ).
These points appear for symmetric junctions, EJR = EJL, at
φ = π + 2πm, where m ∈ Z. Here the Josephson energies for
the left and right junctions cancel in the Hamiltonian, such
that only the charging energy remains, Ĥ = EC (N̂ + Ng)

2
/2.

Therefore, the Weyl points simply represent the crossings of
the shifted parabolas for different charge states on the island.
Indexing the ground state as n = 0 and the excited states with
n > 0 in ascending order, one can state that the crossings

between band n and n + 1, for n odd (even) occurs at Ng

being (half) integer; see Fig. 2(b). Hence, when we tune from
EJR < EJL to EJR > EJL [see Figs. 2(a) and 2(c)], the Chern
numbers for the different bands [Eq. (2)] change according to
the topological charge (or the chirality) C of the corresponding
Weyl points [see Fig. 2(b)].

Importantly, while the Weyl points connecting the bands
n = 0 and n = 1 are regular Weyl points with topological
charge C = +1, the Weyl points connecting arbitrary higher
bands n and n + 1 have in fact a higher topological charge,
C = +(n + 1), as indicated in Fig. 2(b). We will call such a
point a multiple Weyl point, which can be considered as a
merger of n + 1 regular Weyl points, each with charge +1,
as we explain in a moment. Since each band n experiences
a change in its Chern number by subtracting the topological
charge of the Weyl point connecting to band n − 1 from the
topological charge of the Weyl point connecting to n + 1, the
Chern numbers of all the bands are the same. For CR,n, it
follows that from a completely trivial spectrum for EJR < EJL,
where all CR,n = 0 [Fig. 2(a)], we go to a spectrum where all
bands have the same nonzero Chern number CR,n = +1, for
EJR > EJL [Fig. 2(c)]. Vice versa, for CL,n, we find CL,n = +1
for EJR < EJL, and CL,n = 0 for EJR > EJL. Thus, it is only
meaningful to consider a band as “topologically trivial” if we
refer to a specific Chern number, CL,n or CR,n, because one
is zero and the other one is nonzero for every junction asym-
metry, EJR/EJL ≶ 1, independent of the band n. The Chern
number being the same for all bands is a remarkable feature
and renders the observation of the Chern number insensitive
to whether or not the system is in the ground state (e.g.,
when including finite temperature); see also the discussion in
Sec. IV.

Let us now discuss the physical origin of the multiple Weyl
points. We here provide an explicit discussion for the lowest
two Weyl points, which amount to the topological charges of
+1 and +2. First, regarding the regular Weyl point connecting
the ground and first excited state, the band crossing involves
two charge states which differ by only one Cooper pair,
|N − 1〉 and |N〉. Tuning the parameters close to the crossing,
Ng = −N + 1/2 + δNg, EJR = EJL + δEJ , and φR = π + δφ

while at the same time φL = 0 [117], we find the approximate
Hamiltonian as derived in Appendix A 1,

Ĥ1 = x σ̂x + y σ̂y + z σ̂z, (5)

with x = δEJ/2, y = EJLδφ/2, and z = ECδNg/2, and the
Pauli matrices acting on the charge subspace {|N − 1〉, |N〉},
where σ̂z = |N〉〈N | − |N − 1〉〈N − 1|. This is the standard
form of the Weyl Hamiltonian with the topological charge
C = +1.

As for the double Weyl point, with charge +2, we have
to tune to Ng = −N + δNg, while the other small parameters
(δEJ and δφ) are defined as above. Here the relevant subspace
close to the crossing involves the charge states |N − 1〉 and
|N + 1〉. Importantly, here it is impossible to gap the two
bands with the lowest-order Cooper-pair tunneling process,
because 〈N − 1|e±îϕ |N + 1〉 = 0. Therefore, we need to go to
higher-order processes involving the tunneling of two Cooper
pairs via virtual charge states, which can be done by means of
a Schrieffer-Wolff transformation; see Appendix A 2. We find
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the Hamiltonian of the following form:

Ĥ2 = z σ̂z + 2(x2 − y2)σ̂x + 4xy σ̂y, (6)

with z = ECδNg, x = δEJ/2
√

EC , and y = EJLδφ/2
√

EC , and
where σ̂z = |N + 1〉〈N + 1| − |N − 1〉〈N − 1|. The fact that
the Weyl point, here, has a topological charge of +2 can
be shown in different ways. One could in principle define
a Berry curvature in the 3D space (x, y, z) and compute ex-
plicitly a closed surface integral enclosing the Weyl point.
A more elegant and instructive way is, however, to add a
cotunneling term E (2)

J cos(2ϕ̂) to the full Hamiltonian, Eq. (1),
which may originate from higher-order tunneling processes in
the SIS junction [118–120]. Note that this cotunneling term
is by no means relevant for our considerations. It, however,
serves as a neat mathematical trick to visualize the topolog-
ical charge. Namely, this term introduces a shift c = E (2)

J /4
into Ĥ2 [Eq. (6)], in the σ̂x-term, x2 − y2 → x2 − y2 − c. As
a consequence, the Weyl point at (0, 0, 0) for c = 0 splits
into two regular Weyl points with topological charge +1 at
(±√

c, 0, 0) for finite c. Consequently, without the splitting,
it must have the topological charge C = +2 and, thus, is a
double Weyl point. This proof (not explicitly shown here) can
be extended to higher bands, where three or more regular Weyl
points are merged, giving rise to a triple or higher multiple
Weyl point, due to the gapping of the bands being third or
higher order in Cooper-pair tunneling processes, respectively.

To conclude, let us note one subtle difference between our
notion of a Chern number compared to the more common
definition within solid state theory, where the Chern number
is usually connected to the single-particle band structure. Here
our bands are already in a many-body formulation, such that
there is no need to associate occupation numbers to the indi-
vidual bands.

III. QUANTIZED CURRENT RESPONSE

We now show that the above discussed nonzero Chern
numbers lead to a directly measurable effect, which is a quan-
tized, directed current response, that is, a dc current flowing
either precisely to the left or precisely to the right (depending
on the junction asymmetry), as depicted in Fig. 1. This effect
emerges when driving Ng and φ time dependently. The driving
of the superconducting phase difference is accomplished by
means of applying a voltage,

φ̇R − φ̇L = 2eV, (7)

whereas the gate-induced offset charge is linearly ramped up
(or down) with a constant ramping speed Ṅg. Let us emphasize
that there is an arbitrary number of possibilities to satisfy
Eq. (7). Strictly speaking, since these different choices are re-
lated through a time-dependent unitary transformation Û (via
Ĥ → Û ĤÛ †), they do not give rise to equivalent Schrödinger
equations, due to the additional term −iÛ∂tÛ †. However, this
leads merely to a shift in the initial condition on Ng(t ), which
is irrelevant for the here considered dc current response (due
to the time averaging). Our subsequent results are formulated
independent of this choice.

Before proceeding, let us comment on one important point.
Of course, the ramping up of Ng with a constant ramping
speed can in reality not be exerted for unlimited time, as

the transistor would eventually break. However, as we show
in Sec. V, this is no actual limitation, as this problem can
be easily circumvented by choosing an appropriate driving
protocol.

As we show now, the quantized current response resulting
from the time-dependent driving is in close analogy to the
proposal in Ref. [66]. In the four-terminal setup of Ref. [66],
voltages were applied to two different contacts, resulting in a
pure φ-driving and a resulting dc transconductance. Similar
proposals have very recently emerged in pure SIS junction
circuits [77,78]. Here on the other hand, we have a two-
terminal device with only one independent phase difference
φ = φR − φL and driving in the “mixed” parameter space
(Ng, φ).

To proceed, we consider the dynamics of the system
for slow, adiabatic driving. In this limit, the time-dependent
Schrödinger equation i∂t |ψn(t )〉 = Ĥ (t )|ψn(t )〉 has the solu-
tions [121]

|ψn(t )〉 = eiαn (t )

[
|n(t )〉 +

∑
m �=n

|m(t )〉 i〈m(t )|∂t |n(t )〉
εm(t ) − εn(t )

]
, (8)

under the assumption that, at the initial time t0, the system was
in the eigenstate |n(t0)〉. Here Ĥ (t )|n(t )〉 = εn(t )|n(t )〉 denote
the instantaneous eigenbasis at time t . The time evolution
gives rise to the (here irrelevant) dynamical phase αn(t ) =
−i

∫ t
t0

dt ′εn(t ′) [122]. Note that for simplicity, we refrain from
explicitly adding the time argument (t ) from now on. This
adiabatic approximation is valid for [123] |〈m|∂t |n〉| 
 |εm −
εn|, (n �= m), which in our case requires |Ṅg|, |V | 
 inf |εm −
εn|. Also note that adiabaticity is a standard requirement (see
also Refs. [66,69,77,78]) and that nonadiabatic effects like
Landau-Zener transitions [124] are exponentially suppressed
away from the degeneracy point.

As indicated above, we are interested in the expectation
values of the currents into the system from the left and right
contacts in the presence of the drive. The current operators are
formally defined as

Îα = 2e ∂φα
Ĥ . (9)

The reason that we have to consider both the left and the right
current separately, is that the time-dependent driving of the
gate charge Ng produces a finite dc displacement current, such
that the current expectation values do not simply add up to
zero, as it would be the case for the stationary system. Instead,
we have to carefully keep in mind the current conservation law

ÎR + ÎL = 2e ˙̂N = 2e i[Ĥ, N̂], (10)

where the right-hand side is nonzero, due to Ĥ not commuting
with the island charge N̂ . The expression ˙̂N is, of course, to be
understood in the Heisenberg picture.

We can now compute the expectation values of the cur-
rents, by inserting the wave function given in Eq. (8). We find

Iα,n ≡ 〈ψn |̂Iα|ψn〉 = 2e
[
∂φα

εn + 2 Im
〈
∂φα

n
∣∣∂t n

〉]
, (11)

which we have written in the form Iα,n = I (0)
α,n + I (1)

α,n. Here
I (0)
α,n ∼ ∂φα

εn corresponds to a time-dependent version of the
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ordinary Josephson effect, while I (1)
α,n is a correction term of

first order in the driving parameters.
With the above result, we can now discuss the very im-

portant issue of current conservation, to understand how the
expectation values of the left and right currents are related.
The sum of the zero-order contributions

∑
α I (0)

α,n has to vanish
due to the eigenenergies depending only on the total phase
difference (as discussed in Sec. II). Importantly, however, the
first-order term I (1)

α,n gives rise to a Berry curvature Bα,n, as it
appears in Eq. (2), due to the driving of the offset charge Ng;
and since the Berry curvatures for different α being nontriv-
ially related via Eq. (3), the sum of the first-order contributions
is nonzero. This physical consequence is reflected in the cur-
rent conservation 〈ÎR + ÎL〉ψn

= 2e ∂t 〈N̂〉n, in accordance with
Eq. (10).

In the same spirit as in Ref. [66], we now find that when av-
eraging the currents over long times Iα,n = limτ→∞

∫ τ

0
dt
τ

Iα,n

(dc limit), the zeroth-order contributions I (0)
α,n cancel and the

first-order ones I (1)
α,n average out to give the Chern numbers

Cα,n from Eq. (2), providing the result Iα,n = −2eṄgCα,n. This
is due to the currents being periodic in Ng and φ, such that the
long-time integral will eventually converge into an area inte-
gral over the Brillouin zone of the (Ng, φ)-plane. Importantly,
the presence of the Weyl points and the resulting nontrivial
Chern numbers (as discussed above and shown in Fig. 2) lead
to the quantized dc currents into the system

IR,n =
{

0 EJR < EJL

−2eṄg EJR > EJL
, (12)

IL,n =
{−2eṄg EJR < EJL

0 EJR > EJL
. (13)

This central result is also visualized in Fig. 1. Namely, we find
that the current injected into the system through the ramping
of the gate voltage, 2eṄg, is completely redirected to the right
(left) contact, if EJR is larger (smaller) than EJL—crucially,
irrespective of the precise ratio between EJR and EJL. As we
see, the difference between Cα,n for different α corresponds
to current measurements at different contacts α, which are not
equal due to the displacement current.

We note that the plots in Figs. 1(b) and 1(d) are idealized
in the sense that it is purely hypothetical to stay adiabatic
in the vicinity of the symmetric point, EJR = EJL, where
we necessarily come close to a degeneracy point. At such
a point, Landau-Zener transitions [124] cannot be avoided.
These transitions, and their importance for the observation of
the Chern number have already been discussed for SNS type
junctions (see Ref. [69]), which is why we do not repeat a
similar effort here. Overall, it can be expected that the step in
Figs. 1(b) and 1(d) will be “rounded” due to Landau-Zener
transitions, where the broadening decreases when reducing
the driving frequency of Ng and φ. We also note the impor-
tance of applying a voltage V across the two contacts. If we
were to modulate Ng only, the integral of the zeroth-order
term I (0)

α,n ∼ ∂φα
εn would not in general vanish, nor would the

integral of the Berry curvature extend over the entire Brillouin
zone of (Ng, φ). In the absence of any bias voltage, the total
injected current through the gate drive will be partitioned
to the left and right contact with proportions depending on
many system parameters. The perfect directing of the injected

current to exclusively either the left or the right, independent
of the parameter details, is a pure topological effect, requiring
the combined modulation of the two parameters Ng and φ.

Finally, let us get back to the titular notion of a minimal
topological circuit. In the Hamiltonian, there are overall the
independent parameters EC , EJR − EJL, φ, and Ng [125]. The
last three out of these four parameters provide the base space
in which the Weyl points are defined. Finally, EC guarantees
that the energy spectrum is gapped, such that it is meaningful
to consider discrete bands with individual Chern numbers.
Thus, all involved parameters play an indispensable role for
the observed topological effect.

IV. STABILITY WITH RESPECT TO EXTERNAL
PERTURBATIONS

In analogy to Ref. [66], the convergence of the dc current
to the values in Eqs. (12) and (13) requires the driving fre-
quencies Ṅg and 2eV either to be incommensurable or to come
with a sufficient amount of low-frequency noise to make sure
that the entire Brillouin zone is covered for sufficiently long
times τ . Surprisingly, this means that, here, low-frequency
offset-charge noise actually helps for the observation of the
Chern number, instead of perturbing it. This is a consider-
able advantage with respect to other recent proposals [77,78]
which rely on a control of the offset charge on the order of
an elementary charge e during the entire integration time τ ,
which seems challenging given the experimental evidence for
offset-charge noise [82–84].

A further important point concerns quasiparticle poison-
ing. Quasiparticles appear to be much more numerous than
what should be expected in equilibrium [126,127] and in-
duce stochastic switches between states of different parity.
They are harmful for a large number of quantum devices
such as Cooper-pair boxes [128,129], transmon and fluxo-
nium qubits [130], Flux-qubits [131], Majorana-based qubits
[37–41], or Cooper-pair sluices [113]. Also, the observation of
transport Chern numbers defined purely in φ-space [66,77,78]
is hampered by quasiparticle-induced parity flips, since the
topological numbers differ in different parity sectors. The
Chern number we consider here, however, is the same, in-
dependent of the parity. Namely, in our formalism, parity
flips can be accounted for by simple shifts of Ng by half
an integer, Ng → Ng ± 1/2. Due to the periodicity of the
Berry curvature in Ng-space, it follows that

∫ 1
0 dNgBα,n(Ng ±

1/2, φ) = ∫ 1
0 dNgBα,n(Ng, φ), demonstrating the insensitivity

of the Chern number, Eq. (2), on fermion parity.
Moreover, as already indicated above, the Chern numbers

for all the bands n are the same, due to the higher Weyl points
having higher topological charges, such that the dc current
does not depend on n; see Eqs. (12) and (13). Therefore,
the here predicted effect is likewise not sensitive to finite
temperature occupations of higher energy bands, which is a
further advantage over the proposals in Refs. [66,77,78].

Encouraged by these striking facts, we now consider the
effects of the environment in more detail. As we will show,
stochastic transitions induced by the environment will intro-
duce what we expect to be a small leading-order correction
in the current response. Such stochastic transitions may be of
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various origins. In particular, the aforementioned beneficial
effects of fluctuations in Ng or φα are restricted to low-
frequency fluctuations, that is, in a frequency regime where
the noise can be considered adiabatic, such that it does not
give rise to stochastic transitions between different energy
bands. Even though the finite-frequency power spectrum of
the noise can be expected to be low, such transitions may still
occur in reality and have to be taken into account. Likewise,
quasiparticles may induce stochastic transitions within the
time required to average the current signal.

Therefore, a detailed open quantum system description
would have to encompass a large number of models to ac-
count for all perturbations. For instance, phase fluctuations
are standardly described by an external impedance, which can
be modeled by an ensemble of LC resonators [132]. Charge
fluctuations are usually modeled via so-called two-level fluc-
tuators [133–135]. However, such models have recently been
put into question for 2D transmons, where a deviation from
the typical 1/ f -noise spectrum has been observed [84]. In or-
der to avoid any dependence on such details, we here take into
account the open-system dynamics as generally as possible,
by means of a quantum master equation for the density matrix
of the system ρ̂,

∂t ρ̂ = −i[Ĥ (t ), ρ̂] + W(t ) ρ̂. (14)

The effect of the environment is described by the time-local
kernel W, which may in general be time-dependent (since
the system is driven time dependently). In order to guarantee
positivity of ρ̂ for all times t , we assume that W can be cast
into a Lindblad form (whose specific form, however, is, in a
first approach, irrelevant). Apart from that, we assume only
that in the absence of the time-dependent driving, the system
will, up to small corrections, end up in the ground state as
the stationary solution, ρst ≈ ρ̂0 = |0〉〈0|. This is equivalent
to assuming that the environment has a small temperature with
respect to the band gaps, kBT 
 inf |εn − ε0|. Thus, we can
understand W as a generic cooling mechanism. It is important
to note that we do not assume the usually standard rotating-
wave approximation (RWA) and instead keep processes in W
which couple diagonal and off-diagonal contributions to the
density matrix (that is, diagonal and off-diagonal with respect
to the instantaneous eigenbasis of Ĥ ). Strikingly, we find in
the absence of the RWA a leading-order contribution which
would otherwise be neglected and which is, at least nominally,
of the same order as the Thouless result. Nonetheless, this cor-
rection can be shown to be small, due to other small factors;
see below.

Let us now again focus on slow driving. For this purpose
it is useful to cast Eq. (14) into the aforementioned instanta-
neous eigenbasis of Ĥ . We thus get

∂t ρ̂ = −i(L0 + δL)̂ρ + W(t ) ρ̂. (15)

Importantly, all the objects appearing in Eq. (15) differ from
the ones in Eq. (14) by the time-dependent unitary transfor-
mation Û (t ), which changes the basis to the instantaneous
eigenbasis. For example, for the density matrix, this cor-
responds to a mapping ρ̂ → Û ρ̂ Û †. Therefore, one should
strictly speaking use different symbols for Eqs. (14) and (15)
from which we will refrain for notational simplicity. As a
consequence of the unitary transformation, the closed-system

dynamics receives an extra term to the ordinary L0• = [Ĥ , •],
denoted as δL• = [−iÛ∂tÛ †, •] [136].

For a consistent slow-driving approximation we have to
consider the relationship between the three timescales ‖W‖−1,
‖δL‖−1, and ‖L0‖−1 (where ‖A‖ is a suitably chosen norm
to capture the magnitude of A). The regular closed-system
dynamics scales with the instantaneous energy gaps ‖L0‖ ∼
|εm − εn| and the additional contribution due to the driv-
ing scales as ‖δL‖ ∼ 〈m|∂t |n〉 (both with m �= n). Now, the
regime of interest is ‖L0‖−1 < ‖W‖−1 < ‖δL‖−1. Thus, we
explicitly expand the density matrix in orders of ‖W‖ and
‖δL‖,

ρ̂ =
∑
ν,μ

ρ̂ (ν,μ), (16)

where ρ̂ (ν,μ) scales as ‖δL‖ν‖W‖μ, and plug the result into the
expectation value Iα = tr[̂Iαρ̂]. The derivation of these results
can be found in Appendix B. Note that in general, there may
be specific types of system-reservoir interactions providing an
additional contribution to the current, which can generically
be taken into account by a “current kernel” WI [137], such that
Iα = tr[̂Iαρ̂] + tr[WI ρ̂]. For simplicity, we assume that the
system-reservoir interaction is current conserving such that
there is no such WI term. Since ‖W‖ > ‖δL‖, the corrections
of ρ̂ due to the open-system dynamics are in principle domi-
nant. However, in the absence of an explicit (time-dependent)
driving and with the environment at equilibrium, the system
cannot generate a finite dc current, such that the dc contribu-
tions of all I (0,μ)

α = tr[̂Iαρ̂ (0,μ)] must be zero [138]. Therefore,
we need to consider at least first order in the driving parameter
‖δL‖. As we will show in the following, the leading-order
terms of the dc current will be

Iα = I
(1,0)
α = I

(1,0)
α,o + I

(1,0)
α,d , (17)

the computation of which is detailed in Appendix B. Nomi-
nally, both of these contributions, I

(1,0)
α,o and I

(1,0)
α,d , are of the

same order (1,0). However, they are of fundamentally differ-
ent origin. As we will discuss now, the first term, I

(1,0)
α,o = I

(1)
α,0,

is simply the closed-system current proportional to the Chern
number as computed previously in Sec. III. The second term,
I

(1,0)
α,d , will provide the leading-order correction to the above

Chern number term, and is due to a combination of driving
and open-system dynamics (even though it is nominally of
zero order in ‖W‖), as we will see in a moment. Moreover, its
existence is based on the kernel creating transitions between
diagonal and off-diagonal matrix elements, which is not the
case when applying the RWA.

As already foreshadowed in Eq. (17), in order to discuss
the current it is useful to decompose each order, I (ν,μ)

α =
tr[̂Iαρ̂ (ν,μ)], as

I (ν,μ)
α = I (ν,μ)

α,d + I (ν,μ)
α,o , (18)

with

I (ν,μ)
α,d/o = tr[̂IαPd/o ρ̂ (ν,μ)]. (19)

Here the projection superoperator Pd is defined to project
onto the diagonal sector (in the eigenbasis of Ĥ ), giving
〈n|(Pd ρ̂ )|m〉 = δnm〈n|̂ρ |m〉. Vice versa Po projects onto the
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off-diagonal subspace, such that Pd + Po = I, where I is the
identity superoperator, leaving any input matrix unchanged.

Thus, the first term,

I (ν,μ)
α,d = 2e

∑
n

ρ (ν,μ)
nn ∂φα

εn, (20)

is arising from the density-matrix contributions that are diag-
onal (analogously to the zero-order term in the closed system,
I (0)
α,0 = ∂φα

εn), while the second term is associated with the
off-diagonal part of ρ̂, originating in the driving and the inter-
action with the environment. It can be brought into the form

I (ν,μ)
α,o = 2e tr

[
iN̂αL0ρ̂

(ν,μ)
]
. (21)

Here we defined N̂α ≡ −i
∑

n,m〈n|∂φα
|m〉|n〉〈m|. Evidently,

N̂α can be formally related to the Cooper-pair number operator
of contact α. However, note that care has to be taken with this
interpretation. The contacts in the here considered model are
macroscopically large and their actual charge operators do not
have a well-defined expectation value, whereas N̂α is always
well behaved. To avoid such unnecessary complications, we
simply refer to it in the way it is defined: as the operator −i∂φα

expressed in the eigenbasis of Ĥ .
We now have to find the contributions to the density matrix

by expanding it according to Eq. (16) and solving the Lindblad
equation, Eq. (15), for leading orders in (ν, μ). The details of
this calculation are shown in Appendix B. Let us first consider
the contribution Iα,o as defined in Eq. (21). When plugging in
the solution ρ̂ (1,0), we find the term

I (1,0)
α,o = −2e tr[iN̂αδLρ̂0] = I (1)

α,0, (22)

giving rise to exactly the same Berry curvature term as in
the closed system; see Eq. (11). For Iα,o one could now in
principle compute higher-order terms, such as ρ̂ (1,1), to obtain
corrections due to the open-system dynamics. However, as
already indicated in Eq. (17), when including the impact of
the environment, it turns out that there will actually be a
correction nominally of zero order in ‖W‖ in the current
contribution Iα,d .

Let us here discuss the origin of this surprising new term.
When treating the closed system in Sec. III, we have given
the solution of the diagonal part of the density matrix as
Pd ρ̂ = |0〉〈0|. However, strictly speaking, this is not the most
general solution for the closed system. As a matter of fact, in
the absence of any relaxation mechanisms, the most general
solution for the diagonal part can be any mixed state Pd ρ̂ =∑

n ρnn|n〉〈n| with arbitrary ρnn provided that ρnn be constant
in time. If all ρnn are indeed constant in time, then Eq. (20)
will average to zero when computing the dc component. In
the open system, the kernel W accomplishes two things. On
the one hand, it fixes the solution for the diagonal part of
the density matrix, that is, the ρnn are now unique. On the
other hand, these ρnn now depend in general on time. Let
us emphasize that this nontrivial behavior of the diagonal
part is present only when including processes that couple the
diagonal and the off-diagonal sectors in W—in other words,
it is a consequence of going beyond the RWA. Therefore, we

find

I (1,0)
α,d = 2e

∑
n

ρ (1,0)
nn ∂φα

εn, (23)

with

ρ (1,0)
nn =

{
W̃−1

dd Pd

[
δL

1

L0
W + W

1

L0
δL

+ i∂t

(
W̃−1

dd Pd W
1

L0
W

)]
ρ̂0

}
nn

. (24)

Since ∂tρ
(1,0)
nn �= 0 in general, the dc contribution of this

current will be nonzero, marking it as the leading-order cor-
rection term. Note that the inverse 1/L0 is defined only in the
off-diagonal sector. However, the objects Wρ̂0 and δLρ̂0, on
which this inverse acts, are both purely off-diagonal, which is
also explained in Appendix B. Similarly, Wdd ≡ Pd WPd has
a zero eigenvalue, corresponding to a degenerate eigenspace
including the ground state, ρ̂0 = |0〉〈0|, and any purely off-
diagonal matrix. Therefore, its inverse is ill-defined. However,
we can construct the inverse W̃−1

dd such that W̃−1
dd Wdd • =

Pd • −ρ̂0 tr[•]. For more details see Appendix B.
While Eqs. (23) and (24) are general under the assump-

tions made, for the sake of concreteness, we now compute
them numerically considering background charge fluctua-
tions [133–135], Ng → Ng + δN̂g. Here δN̂g is an operator,
whose dynamics is governed by an environment Hamilto-
nian, Ĥenv. The circuit Hamiltonian can now be approximated
as follows, Ĥ (Ng) → Ĥ (Ng + δN̂g) ≈ Ĥ (Ng) + V̂ , where we
find the interaction with the environment V̂ = γ ECN̂ ⊗ δN̂g.
The total system plus environment is thus described by
the Hamiltonian Ĥ (Ng) + V̂ + Ĥenv. Let us now focus on
the regime where EJ (φ) � EC with the Josephson energy

EJ (φ) =
√

E2
JR + E2

JL + 2EJREJL cos(φ) (which we refer to
as the transmon limit). This regime is of particular interest
for the here considered topological effect, because the energy
bands are flatter and therefore transitions between bands (via
Landau-Zener) are suppressed. Note that we aim to remain
in this transmon regime for all φ, which implies in addition,
that the two junctions should be sufficiently asymmetric w.r.t.
EC , |EJR − EJL| � EC . Additionally, we assume ξ 
 1, with
ξ ≡ inf{EJR/EJL, EJL/EJR}, to simplify the numerical calcu-
lations. In this transmon limit, we can describe our system as
a damped harmonic oscillator (HO) with an energy spacing
of ω0 = √

ECEJ (φ). The respective kernel is a well-known
result from standard literature of open quantum systems [139],
which can be computed by tracing out the environment de-
grees of freedom, resulting in

W = −� L2
P − � LPLX + i

2
r LP2 + iζ LPLX , (25)

with LA• = [Â, •], X̂ = 4
√

EJ/EC [̂ϕ − φL − δ(φ)],
δ(φ) = arctan[sin φ/(EJL/EJR + cos φ)], and P̂ =

4
√

EC/EJ (N̂ + Ng). The four (real) correlation functions
are

� − i� =
∫ 0

−∞
dt1 κ (t1) eiω0t1 , (26)

− r

2
+ iζ =

∫ 0

−∞
dt1 μ(t1) eiω0t1 , (27)
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where

κ (t1) = λ2

2
〈{δN̂g(t1), δN̂g(0)}〉, (28)

μ(t1) = i
λ2

2
〈[δN̂g(t1), δN̂g(0)]〉, (29)

with λ = γ
√

ECω0. We observe that these correlation func-
tions depend only on the transmon frequency ω0 (and EC),
which in turn does not depend on Ng and only very weakly
on φ. Therefore, this already indicates that the last term of
Eq. (24), i.e., the term with the time derivative ∂t , is not the
dominant term.

Due to microreversibility, the ratio of excitation and relax-
ation rates of two neighboring states is a Boltzmann factor
�n→n+1/�n+1→n = (� − ζ )/(� + ζ ) = e−βω0 , with �n→n′ ≡
〈n′|(W|n〉〈n|)|n′〉. And since we focus on low temperature
(compared to ω0), we find that � ≈ ζ . Thus, we have three
independent correlation functions determining the kernel,
which, for realistic predictions, would have to be identified
experimentally along similar lines as Ref. [84]. Here, for
demonstration purposes (to show that the above discussed cor-
rection does not vanish in general), we assume the reservoir to
be an ohmic bath with a cutoff frequency ωc � ω0. Herewith,
one finds the following scalings of the correlation functions
[139]:

�, ζ ∼ γ 2EC
ω2

0

ω2
c

, (30)

� ∼ γ 2EC
ω2

0

ω2
c

ln

(
ω0

ωc

)
, (31)

r ∼ γ 2EC
ω0

ωc
. (32)

Assuming a junction asymmetry described by ξ 
 1 allows
us now to expand the current correction from Eq. (23) w.r.t.
ξ . Since all φ-dependencies enter via a dependence on EJ (φ)
or ∂φδ(φ) = EJR(EJR + EJL cos φ)/E2

J (φ), we find that the
zeroth order (in ξ ) is always a constant term (in φ) while the
first order is associated with a harmonic dependence. Thus,
odd orders of the current vanish when averaging over φ (cor-
responding to a time integral), and since ∂φα

εn has a vanishing
zeroth order, the correction has to be at least of quadratic order
in the asymmetry ξ . This can be confirmed numerically: see
Fig. 3, where we explicitly expand Eq. (23) up to second order
in ξ , and subsequently perform an integration over φ to obtain
the dc component of I (1,0)

α,d .
We conclude that while the dc part of the open-system

correction to the current does not vanish, and gives rise to a
deviation from the otherwise perfect current quantization, our
analysis offers very concrete indications how to minimize its
influence. Namely, by means of our general discussion above,
we identify an important difference in the scaling behavior
between the topological part of the current response, and
the open-system correction: while the former appears with
a prefactor proportional to Ṅg [see Eqs. (12) and (13)], the
correction in Eq. (23) turns out to scale with φ̇ = 2eV , such
that for this deviation to be small, V should not be chosen too
large with respect to the ramping of Ng. To conclude, we find
that the correction is small as long as ξ 2 V/Ṅg < ‖L0‖/‖W‖.
Therefore, while the open-system correction is not exponen-

FIG. 3. Open-system dc currents. Depicted are (a) the full dc
current response in the open system Iα and (b) the leading-order
correction of the response due to the open-system description, I

(1,0)
α,d ,

both relative to the current Iind = −2eṄg, induced by the ramping
of the offset charge. Those numerical results are obtained by as-
suming a large junction asymmetry, EJR/EJL � 1 or EJR/EJL 
 1.
In the intermediate regime, the perturbation cannot be expected to
remain small (or even finite) due to the energy gap decreasing to
zero when approaching the point degeneracy. For a large asymmetry,
the deviation is quadratically suppressed. We chose the parameters
EJR + EJL = 50EC , ωc = 100EC , and either φ̇ = 0.1Ṅg or φ̇ = 0.5Ṅg

to demonstrate that the current correction scales with φ̇ = 2eV , and
not with Ṅg as for the closed-system current.

tially suppressed (which seems to be a generic feature of
open systems; see, e.g., a recent discussion for topological
insulators [140]), our above calculation provides very clear
and stringent strategies to mitigate it, by choosing the driving
and other parameters accordingly. In particular, as we explic-
itly show in Fig. 3, the overall open-system correction can
be kept very small, due to ξ 
 1 and φ̇ < Ṅg. In addition,
given the level of generality of Eqs. (23) and (24), we expect
that a similar perturbation occurs in the models considered in
Refs. [77,78].

V. DC CURRENT MEASUREMENT

As we have indicated in Sec. III, a remaining experimental
obstacle concerns the fact that Ng cannot be ramped up in-
definitely since at some point the transistor will break. This
limitation can easily be circumvented with a simple proce-
dure using the fact that the direction of the quantized dc
current is sensitive to the junction asymmetry. Namely, we
replace the right junction with a superconducting quantum
interference device (SQUID) consisting of two parallel junc-
tions, each with an energy EJS > EJL/2 [see Fig. 4(a)]. This
introduces a tunable Josephson energy EJR → EJR(φext) =
2EJS cos(φext/2), controlled by an external magnetic flux go-
ing through the SQUID [141].

In a first step, the protocol now simply consists of ramping
up Ng to a maximal value, related to the maximum gate voltage
Vmax, in one configuration, e.g., where EJR(φext ) > EJL (such
that the induced dc current flows into the right contact). After-
wards φext is changed to a value where EJR(φext ) < EJL, and
Ng is subsequently ramped back down to a minimal value re-
lated to the gate voltage Vmin (pumping the dc current into the
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FIG. 4. Measurement protocol. (a) The right Josephson junctions
is replaced by a SQUID whose energy EJR(φext ) can be tuned by
the magnetic flux φext. The voltage V drives the phase difference
continuously, while the linearly time-dependent gate voltage Vg(t )
induces a dc current Iind ∝ V̇g. (b) A suggestion on how to tune Ng via
Vg and EJR via φext as a function of time in order to be able to measure
a quantized dc current. Whenever we ramp up Ng, the induced current
flows into the right lead, and when we ramp it back down, the current
flows from the left lead into the system. In the intermediate steps, Ng

is held constant to adjust φext such that EJR becomes larger or smaller
than EJL .

system from the left contact), while keeping the bias voltage
V on for all times [see Fig. 4(b)]. The time required to switch
the junction asymmetry is referred to as tswitch, while a single
ramping goes on for tramp. For long times we will measure the
averaged dc current

Idc =
(

1 − tswitch

tramp + tswitch

)
eṄg, (33)

which thus depends only on the single driving parameter Ṅg

and the two relevant times of the cycle, which are completely
controlled by the experimenter. In the limit of tswitch 
 tramp,
we find Idc = eṄg. Note that in a single ramping process
the current 2eṄg flows, as per Eq. (12) and Eq. (13). How-
ever, we need two individual ramping processes (ramping
the offset charge in both directions) to complete the cycle,
which takes twice the time. Furthermore, we stress that as
long as a transition from EJR(φext ) < EJL to EJR(φext) > EJL

can be achieved, the flux control does not even need to be
very precise, nor is it susceptible to flux noise, apart from
the above discussed finite-frequency perturbations. Note that
the only important restriction is to make sure that Vmin and
Vmax are chosen such that the system does not go through the
degeneracy point (Weyl point) when ramping from EJR < EJL

to EJR > EJL (and vice versa). However, we expect even such
a dissipation-induced deviation will likely not be dramatic due
to this event not being very probable and giving only a small
contribution compared to the topological part as long as the
difference Vmax − Vmin is chosen sufficiently large.

In fact, this protocol has significant similarity with Cooper-
pair sluices [110–113]. However, one advantage of our
approach is that we do not require a precise control of the
tunnel couplings to the contacts: the quantization of the cur-
rent requires merely the averaging in the (Ng, φ)-space, which
is guaranteed in the presence of the bias voltage V . Moreover,
contrary to regular Cooper-pair pumps [113], our proposal is
insensitive to fermion parity, as we argued above.

VI. CONCLUSION

We have found that the Cooper-pair transistor hosts
topologically nontrivial Chern numbers, giving rise to a quan-
tization of the dc current response, which is precisely steered
either to the left or right contact. This circuit has various
advantages to alternative systems, not least the simplicity
and straightforward realizability of the circuit. Surprisingly,
low-frequency charge noise is actually beneficial for the ob-
servation of the quantization effect. Moreover, the Chern
number is insensitive to quasiparticle poisoning and to
whether or not the system is in its ground state. The latter is
due to the emergence of Weyl points with higher topological
charges connecting higher bands. Remaining environment-
introduced perturbations are found to be small. Finally, we
presented an experimentally feasible protocol to carry out the
dc current measurement. We conclude that the Cooper-pair
transistor presents a promising platform to realize a topolog-
ical circuit, with a topological number defined in a “mixed”
basis consisting of the phase difference φ and the offset
charge Ng.

Finally, when considering topological systems, the ques-
tion of the existence of protected edge states inevitably occurs.
Usually, in materials with a topological band structure in
k-space, edge states naturally occur at the termination of the
material (in position space). Since we here consider topologi-
cal numbers in an alternative base space, the physical presence
of edge states becomes somewhat elusive. Nonetheless, they
are present in the following sense. A sharp boundary in x-
space corresponds to a highly nonlocal feature in (canonically
conjugate) k-space as per the Heisenberg uncertainty princi-
ple, such that the edge is able to “probe” the bulk topological
number directly [142]. In our proposal on the other hand, the
Chern number is probed via time-dependent driving, and sub-
sequent time averaging of the electric current response. Since
the current corresponds to the total number of transported
particles (per time), and this particle number being conjugate
to φ, one can interpret the quantization of the former as an
indirect probe of an edge state. The explicit creation of edge
states in charge space (e.g., via an active shaping of the charge
space itself) will be a crucial future research endeavor, in order
to use the above topological features for protected quantum
information processing.
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APPENDIX A: DERIVATION OF TOPOLOGICAL
CHARGES

1. Single Weyl point

We here provide the derivation of the Hamiltonian close
to the crossing point between bands n = 0 and n = 1, repre-
senting a Weyl point with topological charge C = +1, as in
Eq. (5).
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When tuning the Hamiltonian [see Eq. (1)] near the degen-
eracy, that is, Ng = −N + 1/2 + δNg, EJR = EJL + δEJ , and
φR = π + δφ while at the same time φL = 0, we find up to
first order in δNg, δEJ , and δφ:

Ĥ =EC

2

(
N̂ − N + 1

2
+ δNg

)2

− EJL cos (̂ϕ)

+ (EJL + δEJ ) cos (̂ϕ − δφ)

≈EC

2

(
N̂ − N + 1

2

)2

+ EC

(
N̂ − N + 1

2

)
δNg

+ δEJ cos (̂ϕ) + EJL sin (̂ϕ)δφ. (A1)

We now write this Hamiltonian in the charge eigenspace and
keep only the relevant subspace involved in the crossing,
{|N − 1〉, |N〉}. In this subspace, we can write the operators as
N̂ = N |N〉〈N | + (N − 1)|N − 1〉〈N − 1| and eîϕ = |N〉〈N −
1|, leading to the Hamiltonian

Ĥ =EC

8
(|N〉〈N | + |N − 1〉〈N − 1|)

+ EC

2
δNg(|N〉〈N | − |N − 1〉〈N − 1|)

+ δEJ

2
(|N〉〈N − 1| + |N − 1〉〈N |)

+ EJL

2
δφ(−i|N〉〈N − 1| + i|N − 1〉〈N |)

=EC

8
Î + EC

2
δNg σ̂z + δEJ

2
σ̂x + EJL

2
δφ σ̂y, (A2)

where Î = |N〉〈N | + |N − 1〉〈N − 1| and σ̂x, σ̂y, σ̂z are the
usual Pauli matrices with σ̂z = |N〉〈N | − |N − 1〉〈N − 1|.
Note that we can ignore the first term, because, within the
subspace spanned by the states |N〉 and |N − 1〉, it can be
regarded as a constant energy contribution.

2. Double Weyl point

Now we derive the Hamiltonian near the crossing point
between bands n = 1 and n = 2, describing a Weyl point with
topological charge C = +2, as in Eq. (6).

As pointed out in the main text, we have to tune to Ng =
−N + δNg, EJR = EJL + δEJ , and φR − φL = π + δφ to get
close to the double Weyl point. Here a gapping can occur
only by changing between charge states |N − 1〉 and |N + 1〉,
which is achieved by a higher-order process involving the tun-
neling of two Cooper pairs via virtual charge states. We tackle
this problem by means of a Schrieffer-Wolff transformation.
First, we are shifting the reference point of the energy by
the average value of the charge subspace {|N − 1〉, |N + 1〉},
Ĥ → Ĥ − 1

2 tr[Ĥ P̂], with the projector onto this subspace
P̂ = |N − 1〉〈N − 1| + |N + 1〉〈N + 1|. Afterwards, we can
write the effective Hamiltonian in the low-energy regime ap-
proximately as

Ĥ2 = P̂Ĥ0P̂ − P̂V̂ (1 − P̂)
1

Ĥ0
V̂ P̂, (A3)

when decomposing the Hamiltonian according to Ĥ = Ĥ0 +
V̂ , with

Ĥ0 =EC

2

∑
N ′

[(N ′ − N + δNg)2 − 1]|N ′〉〈N ′|

≈EC

2

∑
N ′

[(N ′ − N )2 − 1 + 2(N ′ − N )δNg]|N ′〉〈N ′|

(A4)

and

V̂ =
∑

N ′

[(
EJL + δEJ

2
eiδφ − EJL

2

)
|N ′ − 1〉〈N ′| + H.c.

]

≈
∑

N ′

[(
δEJ

2
+ i

EJL

2
δφ

)
|N ′ − 1〉〈N ′| + H.c.

]
, (A5)

keeping only the lowest order in δNg, δφ, and δEJ . Inserting
those two into Eq. (A3), we find

P̂Ĥ0P̂ = ECδNg(|N + 1〉〈N + 1| − |N − 1〉〈N − 1|) (A6)

and

P̂V̂
1 − P̂

Ĥ0
V̂ P̂ =

( |v|2
εN

+ |v|2
εN+2

)
|N + 1〉〈N + 1|

+
( |v|2

εN
+ |v|2

εN−2

)
|N − 1〉〈N − 1|

+ v2

εN
|N − 1〉〈N + 1| + H.c., (A7)

where we defined εN ′ ≡ EC/2 [(N ′ − N )2 − 1] and v ≡
(δEJ + iEJLδφ)/2. We ignore the first two terms of Eq. (A7)
since they give us only what can be regarded as constant
energy contributions. Inserting Eqs. (A6) and (A7) back into
Eq. (A3), we find

Ĥ2 = ECδNg σ̂z + δE2
J − E2

JLδφ2

2EC
σ̂x + EJLδEJδφ

EC
σ̂y, (A8)

arriving at Eq. (6).

APPENDIX B: OPEN-SYSTEM CORRECTION TERMS

Here we apply perturbation theory to the master equation,
Eq. (15), to derive the corrections to the current expectation
value as shown in Eq. (17), arising through a coupling to the
environment and a time-dependent driving of the system. We
vectorize ρ̂ and decompose it into diagonal and off-diagonal
sectors (in the eigenbasis of Ĥ ) |ρ) = (|ρd ), |ρo)), each of
which are represented by vectors in the Fock-Liouville space

|ρd ) =

⎛⎜⎜⎝
ρ00

ρ11

ρ22
...

⎞⎟⎟⎠, |ρo) =

⎛⎜⎜⎝
ρ01

ρ10

ρ02
...

⎞⎟⎟⎠. (B1)

In the same manner, we write the superoperators in the corre-
sponding matrix representation with four subblocks. The two
diagonal subblocks of these matrices correspond to transitions
from diagonal to diagonal, respectively off-diagonal to off-
diagonal sectors. The off-diagonal matrix subblocks describe
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the coupling between the diagonal and off-diagonal sectors,
such that the master equation has the following shape:(|ρ̇d )

|ρ̇o)

)
=

[
−i

(
0 δLdo

δLod Loo + δLoo

)
+

(
Wdd Wdo

Wod Woo

)](|ρd )
|ρo)

)
, (B2)

where Loo denotes the nonzero part of the Liouvillian super-
operator L0.

We demand that Wdd has one (nondegenerate) zero eigen-
value (equivalent to it having a stationary state) Wdd |ρ (0,0)

d ) =
0. Let us additionally suppose that Wdd relaxes the system
to the ground state (up to exponentially suppressed contri-
butions, equivalent to a low temperature assumption) such
that |ρ (0,0)

d ) = |0d ) (the vectorized version of ρ̂ (0,0) = |0〉〈0|
appearing in the main text as ρ̂0). The subscript d simply
expresses the fact that here, the size of the vector is that of
the diagonal sector, such that∣∣ρ (0,0)

) = |0) =
(∣∣0d

)
0

)
. (B3)

Be aware that this state is not the exact stationary state of the
total kernel W because we are explicitly allowing transitions
between diagonal and off-diagonal states in the kernel, rep-
resented by the off-diagonal subblocks. Corrections to ρ̂ (0,0)

are deviations from the commonly assumed rotating-wave
approximation (RWA). Therefore, in the absence of the time-
dependent driving, we will always end up in a stationary state
of the shape ρ̂st = ρ̂ (0,0) + ρ̂ (0,1), where ρ̂ (0,1) denotes the
first-order correction beyond RWA. The notation (0,1) refers
to this contribution being of zero order in the driving ‖δL‖ and
of linear order in the kernel ‖W‖; see also Eq. (16). However,
the stationary state, ρ̂st, does not contribute to the dc part of
the current. As we already argued in the main text, this is due
to the fact that dc currents can be induced only by driving the
system out of equilibrium and therefore cannot be connected
to terms of zero order in the driving with the environment at
equilibrium [138].

Turning on the slow driving of the system now gives us
a small correction to the density matrix, driving the system
away from the stationary state to what we call a quasis-
tationary state, ρ̂. Assuming that ‖δL‖ < ‖W‖ < ‖L0‖, we
can expand this state in both ‖W‖ and ‖δL‖, analogously to
Eq. (16), as

|ρ) =
∑
ν,μ

∣∣ρ (ν,μ)
)
. (B4)

We now define the quasistationary state ρ̂ such that the time
derivative of each order ∂t |ρ (ν,μ) ) is of higher order in the
driving (ν + 1, μ). Here the zeroth order, |ρ (0,0)) = |0), is
constant, meaning it only implicitly depends on time due to
the now time-dependent basis (which is the instantaneous
eigenbasis of Ĥ).

Besides the previously mentioned |ρ (0,1)), we now find the
first-order correction |ρ (1,0)) which has a nonzero dc contri-
bution and therefore gives rise to the leading-order terms of
the dc current. Even though |ρ (0,1)) does not contribute to the
dc current, we nonetheless have to compute it because it is a

necessary intermediate result to calculate the diagonal sector
of the correction |ρ (1,0)).

Reexpressing Eq. (B2) for the diagonal and off-diagonal
sectors separately to find the quasistationary state, we find

∂t |ρd ) =Wdd |ρd ) + [−iδLdo + Wdo]|ρo), (B5)

∂t |ρo) =[−iδLod + Wod ]|ρd )

− [i(Loo + δLoo) − Woo]|ρo). (B6)

We begin by considering the stationary open system (i.e., in
absence of the driving) equivalent to keeping only terms of
zero order in the driving. In leading order of ‖W‖, we find

0 = Wdd

∣∣ρ (0,1)
d

) + Wdo

∣∣ρ (0,1)
o

)
, (B7)

0 = Wod |0d ) − iLoo

∣∣ρ (0,1)
o

)
, (B8)

providing the stationary state

|ρst ) =
(|0d ) − W̃−1

dd Wdo

∣∣ρ (0,1)
o

)∣∣ρ (0,1)
o

) )
, (B9)

with ∣∣ρ (0,1)
o

) = −i
1

Loo
Wod |0d ). (B10)

Here W̃−1
dd is defined such that

W̃−1
dd Wdd = Idd − |0d )(0d |, (B11)

with Idd being the identity matrix in the diagonal subspace and
(0d | being the left eigenvector of Wdd with eigenvalue zero,
which is the trace (0|• = tr[•]. We use this notation to denote
a map from an operator to a scalar, such that the scalar product
(0|0) = tr[̂ρ (0,0)] = 1.

We can derive the corrections for the quasistationary state
in the presence of the drive by comparing the terms of
Eqs. (B5) and (B6) that are of linear order in ‖δL‖, where
we find in leading order of ‖W‖

∂t

∣∣ρ (0,1)
d

) = Wdd

∣∣ρ (1,0)
d

) − iδLdo

∣∣ρ (0,1)
o

) + Wdo

∣∣ρ (1,0)
o

)
,

(B12)

0 = −iδLod |0d ) − iLoo

∣∣ρ (1,0)
o

)
. (B13)

This second equation is fulfilled for∣∣ρ (1,0)
o

) = − 1

Loo
δLod |0d ), (B14)

which directly gives us the Thouless result [121] [see Eq. (8)],
|ρ (0,0)

d ) + |ρ (1,0)
o ). This solution now receives an additional

correction in the diagonal sector which one can infer from
Eq. (B12),∣∣ρ (1,0)

d

) =
{

W̃−1
dd

[
δLdo

1

Loo
Wod + Wdo

1

Loo
δLod

+ i∂t

(
W̃−1

dd Wdo
1

Loo
Wod

)]
|0d )

}
. (B15)

We stress that this additional correction arises solely because
of the nonzero off-diagonal subblock in the kernel, Wdo,
which would be neglected when making the RWA. Strikingly,
it is thus an open-system correction of zero order in ‖W‖.
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This contribution, Eq. (B15), gives rise to the leading-order
open-system correction to the current; see Eq. (23).

For a system-reservoir interaction that conserves the cur-
rent (see discussion in the main text), we can write the current
expectation value as Iα = tr[̂Iαρ̂] = (Iα|ρ), introducing the
notation (A|• = tr[Â •]. Iα can be computed with the help of
the operator N̂α = −i

∑
n,m〈n|∂φα

|m〉|n〉〈m|, as already intro-
duced in Eq. (22). It can easily be shown that

Îα = 2e
∑

n

∂φα
εn|n〉〈n| + 2e i[N̂α, Ĥ ], (B16)

from which directly follows

Iα = 2e
∑

n

ρnn ∂φα
εn + 2e(Nα|iL0|ρ), (B17)

which we have written in the form Iα = Iα,d + Iα,o, analo-
gously to the current in the closed system in Eq. (11). Here Iα,d

(Iα,o) represents the current contribution due to the diagonal
(off-diagonal) elements of the density matrix. The diago-
nal term, Iα,d = ∑

n ρnn I (0)
α,n, represents a generalized version

of the zero-order contribution corresponding to the ordinary
Josephson effect of the closed system, I (0)

α,n = 2e ∂φα
εn [see

Eq. (11)]. However, when inserting the order-by-order expan-
sion of the density matrix, Eq. (B4), we find that in contrast
to the closed-system result, this expression contributes to
the dc current, in leading-order via I (1,0)

α,d = 2e
∑

n ρ (1,0)
nn ∂φα

εn,

with ρ
(1,0)
d as in Eq. (B15). The terms of zeroth order in the

driving I (0,μ)
α,d , on the other hand, cannot create a dc con-

tribution with the environment in equilibrium, as discussed
above.

Similarly, we can expand the off-diagonal term, Iα,o =∑
ν,μ I (ν,μ)

α,o , and find that the leading-order term with nonvan-
ishing dc part is first order in the driving and giving rise to the
Berry curvature, I (1,0)

α,o = I (1)
α,0 = −2e(Nα|iδL|0); see Eq. (11).

The linear open-system correction I (0,1)
α,o = 2e(Nα|W|0) is

again purely contributing to the ac current, like any higher-
order term that does not depend on the driving parameters.
We thus find the dc current response Iα = I

(1,0)
α,o + I

(1,0)
α,d as

in Eq. (17), where I
(1,0)
α,o = Iα,0 = −2eṄgCα,0 is the topolog-

ically quantized result for the closed system and I
(1,0)
α,d =

2e
∑

n ρ (1,0)
nn ∂φα

εn is the leading-order correction due to the
open-system description.
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