000903745 001__ 903745
000903745 005__ 20240308203405.0
000903745 0247_ $$2doi$$a10.3390/membranes11120960
000903745 0247_ $$2Handle$$a2128/29582
000903745 0247_ $$2pmid$$a34940461
000903745 0247_ $$2WOS$$aWOS:000735549500001
000903745 037__ $$aFZJ-2021-05385
000903745 082__ $$a570
000903745 1001_ $$0P:(DE-Juel1)173831$$aPark, Gun Woo$$b0$$eCorresponding author
000903745 245__ $$aGeometrical Influence on Particle Transport in Cross-Flow Ultrafiltration: Cylindrical and Flat Sheet Membranes
000903745 260__ $$aBasel$$bMDPI$$c2021
000903745 3367_ $$2DRIVER$$aarticle
000903745 3367_ $$2DataCite$$aOutput Types/Journal article
000903745 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1640168127_13627
000903745 3367_ $$2BibTeX$$aARTICLE
000903745 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903745 3367_ $$00$$2EndNote$$aJournal Article
000903745 520__ $$aCross-flow ultrafiltration is a pressure-driven separation and enrichment process of small colloidal particles where a colloidal feed dispersion is continuously pumped through a membrane pipe permeable to the solvent only. We present a semi-analytic modified boundary layer approximation (mBLA) method for calculating the inhomogeneous concentration-polarization (CP) layer of particles near the membrane and the dispersion flow in a cross-flow filtration setup with a hollow fiber membrane. Conditions are established for which unwarranted axial flow and permeate flow reversal are excluded, and non-monotonic CP profiles are observed. The permeate flux is linked to the particle concentration on the membrane wall using the Darcy–Starling expression invoking axially varying osmotic and trans-membrane pressures. Results are discussed for dispersions of hard spheres serving as a reference system and for solvent-permeable particles mimicking non-ionic microgels. Accurate analytic expressions are employed for the concentration and solvent permeability dependent dispersion viscosity and gradient diffusion coefficient entering into the effective Stokes flow and advection–diffusion equations. We show that the mBLA concentration and flow profiles are in quantitative agreement with results by a finite element method. The mBLA results are compared with predictions by an earlier CP layer similarity solution, showing the higher precision of the former method.
000903745 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000903745 536__ $$0G:(GEPRIS)221475706$$aSFB 985 B06 - Kontinuierliche Trennung und Aufkonzentrierung von Mikrogelen (B06) (221475706)$$c221475706$$x1
000903745 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903745 7001_ $$0P:(DE-Juel1)130858$$aNägele, Gerhard$$b1
000903745 773__ $$0PERI:(DE-600)2614641-1$$a10.3390/membranes11120960$$gVol. 11, no. 12, p. 960 -$$n12$$p960 -$$tMembranes$$v11$$x2077-0375$$y2021
000903745 8564_ $$uhttps://juser.fz-juelich.de/record/903745/files/membranes-11-00960.pdf$$yOpenAccess
000903745 8767_ $$d2024-03-08$$eAPC$$jZahlung erfolgt$$zOABLE Report 03/24
000903745 909CO $$ooai:juser.fz-juelich.de:903745$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000903745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173831$$aForschungszentrum Jülich$$b0$$kFZJ
000903745 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130858$$aForschungszentrum Jülich$$b1$$kFZJ
000903745 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000903745 9141_ $$y2021
000903745 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-02
000903745 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000903745 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903745 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-02
000903745 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02
000903745 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000903745 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000903745 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000903745 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000903745 920__ $$lyes
000903745 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000903745 9801_ $$aFullTexts
000903745 980__ $$ajournal
000903745 980__ $$aVDB
000903745 980__ $$aUNRESTRICTED
000903745 980__ $$aI:(DE-Juel1)IBI-4-20200312
000903745 980__ $$aAPC