000903749 001__ 903749
000903749 005__ 20230123110545.0
000903749 0247_ $$2doi$$a10.1109/TMAG.2021.3082860
000903749 0247_ $$2ISSN$$a0018-9464
000903749 0247_ $$2ISSN$$a1941-0069
000903749 0247_ $$2Handle$$a2128/30598
000903749 0247_ $$2WOS$$aWOS:000745538100009
000903749 037__ $$aFZJ-2021-05389
000903749 082__ $$a620
000903749 1001_ $$0P:(DE-HGF)0$$aZobkalo, Igor$$b0$$eCorresponding author
000903749 245__ $$aMagnetic phases and chirality control in magnetic multiferroics Nd0.8Tb0.2Mn2O5 by the neutron scattering
000903749 260__ $$aNew York, NY$$bIEEE$$c2022
000903749 3367_ $$2DRIVER$$aarticle
000903749 3367_ $$2DataCite$$aOutput Types/Journal article
000903749 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643287542_16643
000903749 3367_ $$2BibTeX$$aARTICLE
000903749 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000903749 3367_ $$00$$2EndNote$$aJournal Article
000903749 520__ $$aNeutron diffraction study of Nd0.8Tb0.2Mn2O5 single crystal has been performed using both non-polarized and polarized neutron diffraction. Low temperature set of magnetic satellites corresponding to two magnetic ordered phases witnesses about the magnetic phase separation. One of those phases with propagation vector k1 = (0.5 0 kz1) bears features of magnetic order in TbMn2O5 with ordering temperature TN ≈ 37 K. Another one with propagation vector k2 = (0.5 0 kz2) and Neel temperature of TN2 ≈ 30 K has a great similarity to magnetic order of NdMn2O5. Both of them are chiral at low temperatures. Difference in chiral domain population could be controlled by the external electric field of few kV/cm. Two additional magnetic phases with k3,4 = (0.5 0 kz3,4) were observed in the short intermediate temperature range 20 – 28 K. Significant temperature hysteresis of 6-8 K for all magnetic phases was observed in dependence of cooling/heating temperature evolution. Results are discussed in the frame of competing magnetic interactions.
000903749 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000903749 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000903749 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000903749 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000903749 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000903749 693__ $$0EXP:(DE-MLZ)POLI-HEIDI-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)POLI-HEIDI-20140101$$6EXP:(DE-MLZ)SR9a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePOLI: Polarized hot neutron diffractometer$$fSR9a$$x0
000903749 7001_ $$0P:(DE-HGF)0$$aGavrilov, Sergey$$b1
000903749 7001_ $$0P:(DE-HGF)0$$aMatveeva, Anna$$b2
000903749 7001_ $$0P:(DE-Juel1)164291$$aSazonov, Andrew$$b3
000903749 7001_ $$0P:(DE-HGF)0$$aBarilo, Sergey$$b4
000903749 7001_ $$0P:(DE-HGF)0$$aShiryaev, Sergey$$b5
000903749 7001_ $$0P:(DE-Juel1)164298$$aHutanu, Vladimir$$b6$$eCorresponding author$$ufzj
000903749 773__ $$0PERI:(DE-600)2025397-7$$a10.1109/TMAG.2021.3082860$$gp. 1 - 1$$n2$$p6400205 $$tIEEE transactions on magnetics$$v58$$x0018-9464$$y2022
000903749 8564_ $$uhttps://juser.fz-juelich.de/record/903749/files/PR_version.pdf$$yOpenAccess
000903749 909CO $$ooai:juser.fz-juelich.de:903749$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000903749 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164298$$aForschungszentrum Jülich$$b6$$kFZJ
000903749 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164298$$aRWTH Aachen$$b6$$kRWTH
000903749 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000903749 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000903749 9141_ $$y2022
000903749 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000903749 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000903749 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000903749 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MAGN : 2021$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000903749 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000903749 920__ $$lyes
000903749 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000903749 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
000903749 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000903749 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000903749 980__ $$ajournal
000903749 980__ $$aVDB
000903749 980__ $$aUNRESTRICTED
000903749 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000903749 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000903749 980__ $$aI:(DE-82)080009_20140620
000903749 980__ $$aI:(DE-588b)4597118-3
000903749 9801_ $$aFullTexts