

Consistent sex classification accuracies across independent datasets

Forschungszentrum

Poster nr. 1657

¹Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ²Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany I.wiersch@fz-juelich.de

Lisa Wiersch^{1,2}, Kaustubh Patil^{1,2}, Simon Eickhoff^{1,2} & Susanne Weis^{1,2}

Introduction

- Ongoing debate: Does a sexual dimorphism in the brain exist (1) or is the overlap of brain features is greater than the difference between the sexes (2)
- Inconsistent findings (3,4) for sex differences in brain organization as captured by resting-state functional connectivity (RSFC)
- The often used group comparison approach is insufficient to encompass the full complexity of sex diffferences in the brain (5)
- Machine learning (ML) approaches should be favored instead

- A ML-classifier that is able to accurately classify male from female brains can be taken as indicator that the expression of these brain features are more sexspecific than overlapping
- We aim to extend the work by Weis et al. (2020, 6) to five independent datasets
- → How accurately can a subjects ´ sex be classified according to the RSFC?
- → Are highly classifying regions consistent across datasets?

Results

CV classification accuracies:

- HCP: M = 73.59%, SD = 1.86%
- 1000BRAINS: M = 72.51%, SD = 2.30%)
- GSP: M = 71.22%, SD = 2.25%
- Cam-CAN: M = 68.72%, SD = 2.50%
- eNKI: M = 64.34%, SD = 2.66%
- Highly predictive parcels were mainly located in the temporal lobe, cingulate cortex, inferior frontal gyrus and the insula

Spearman rank correlations displaying the order of classifying parcels across datasets

	CamCAN	eNKI	1000BRAINS	GSP	НСР
CamCAN	1	0.4001**	0.5710**	0.4028**	0.0909
eNKI	0.4001**	1	0.3138**	0.3639**	-0.0122
1000BRAINS	0.5710**	0.3138**	1	0.4575**	0.1092*
GSP	0.4028**	0.3639**	0.4575**	1	0.1860**
НСР	0.0909	-0.0122	0.1092*	0.1860**	1

* p < 0.05

	CamCAN	eNKI	1000BRAINS	GSP	НСР
CamCAN	1	0.4001**	0.5710**	0.4028**	0.0909
eNKI	0.4001**	1	0.3138**	0.3639**	-0.0122
1000BRAINS	0.5710**	0.3138**	1	0.4575**	0.1092*
GSP	0.4028**	0.3639**	0.4575**	1	0.1860**

- ** p < 0.0001

Lateral and medial view of the spatial distribution of parcel-based classification accuracies

Methods

Samples:

- Cambridge Centre for Ageing and Neuroscience sample (CamCAN): N = 622, age range: 20-87, mean age: 54.78)
- Enhanced Nathan Kline Institute-Rockland sample (eNKI): N = 458, age range: 20-85, mean age: 43.71
- 1000BRAINS study: N = 1042, age range: 20-85, mean age: 59.08
- Brain Genomics Superstruct Project (GSP): N = 870, age range: 21-35, mean age: 23.01)
- Human Connectome Project (HCP): N = 966, age range: 22-37, mean age: 28.29
- All samples were matched for age and sex within each sample

RS Connectome:

- Parcelwise approach with 436 parcels from the Schaefer Atlas (7) and the Brainnetome Atlas (8)
- Time course of activation in RS in each parcel summarized by the eigenvariate
- FC for each parcel computed as correlation of this parcel's time course with each FC of the remaining 435 parcel

Sex classification:

- Support Vector Machine with radial basis function kernel (SVM-RBF, 9) model for classification of each subject's sex from the RS connectome
- Nested optimization for cost and gamma hyperparameters
- 10 repetitions of 10-fold crossvalidation (CV)
- Classification accuracy was averaged over all folds and repetitions of the outer CV-procedure

Cam-CAN 1000BRAINS Mean classification accuracies averaged across all datasets

Discussion

- Classification accuracies varied between datasets, which might be attributable to the variability in sample size, age range and imaging parameters
- Spearman rank correlations showed parcels are in a similar order regarding classification accuracies across datasets for the 1000BRAINS study and **GSP** dataset
- This pattern was not found for the correlations of HCP with CamCAN and eNKI
- This might be attributed to the sample size since the N for eNKI and CamCAN is not as high as for HCP, 1000BBRAINS and GSP
- Concerning the variance in classification accuracies, HCP has the lowest which might also lead to low correlations coefficients
- Lower variance in HCP may rely on the good quality of the HCP dataset, resulting in less overall variance in the results due to noise
- All datasets show a consistent pattern of brain regions displaying high classification accuracies
- Highly classifying regions are located in the temporal lobe, cingulate cortex, inferior frontal gyrus and the insula
- Weis et al. (2020, 6) found similar regions to be highly classifying

- Within-sample classification accuracies for all five datasets are also in a similar range as in the study by Weis et al. (2020,6)
- Highly classifying regions are related to the default mode network, high-level cognition and the subjective representation of the body (10)
- Classification accuracies were moderately high, indicating the features in RSFC are not fully sexual dimorphic
- The features can be rather seen as parts of the human brain mosaic which features may be common in males and females
- Still, there are similar brain regions for all datasets that distinguish between males and females on a high level
- → Highly classifying brain regions are consistent across datasets, independent of sample size, age range or imaging parameters!

References

1.Glezerman, M., Yes, there is a female and a male brain: Morphology versus functionality. Proc Natl Acad Sci U S A, 2016. 2.Joel, D., et al., Sex beyond the genitalia: The human brain mosaic

Proceedings of the National Academy of Sciences, 2015. 112(50): p 3.Scheinost, D., et al., Sex differences in normal age trajectories of

functional brain networks. Human brain mapping, 2015. 36(4): p. 4.Zhang, C., et al., Sex and Age Effects of Functional Connectivity in

Early Adulthood. Brain Connect, 2016. 6(9): p. 700-713. 5. Forde, N.J., et al., Sex Differences in Variability of Brain Structure Across the Lifespan. Cereb Cortex, 2020. 30(10): p. 5420-5430. 6. Weis, S., et al., Sex Classification by Resting State Brain Connectivity. Cereb Cortex, 2020. 30(2): p. 824-835. 7. Schaefer, A., et al., Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex, 2018. **28**(9): p. 3095-3114. 8.Fan, L., et al., The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb Cortex, 2016. 26(8): p.

9.Chang, C.-C. and C.-J. Lin, Libsvm. ACM Transactions on Intelligent Systems and Technology, 2011. 2(3): p. 1-27. 10.Lin, C.S., et al., Neural network of body representation differs between transsexuals and cissexuals. PLoS One, 2014. 9(1): p